cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329384 G.f.: (1 + x) * (1 + x^2) * (1 + x^3) * Product_{k>=1} (1 + x^k).

Original entry on oeis.org

1, 2, 3, 6, 8, 11, 16, 20, 26, 34, 43, 54, 68, 84, 103, 127, 154, 186, 225, 269, 321, 383, 453, 535, 631, 740, 866, 1012, 1178, 1368, 1587, 1835, 2117, 2440, 2804, 3217, 3687, 4215, 4812, 5487, 6244, 7096, 8055, 9128, 10331, 11681, 13187, 14870, 16752, 18846, 21180
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2020

Keywords

Comments

Number of partitions of n into distinct parts if there are two types of 1's, two types of 2's and two types of 3's.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[(1 + x) (1 + x^2) (1 + x^3) Product[(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[(-1)^(k/d + 1) If[d < 4, 2, 1] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 50}]

Formula

a(n) = A036469(n) + A036469(n-3) - A036469(n-4) - A036469(n-7).
a(n) ~ 2*exp(Pi*sqrt(n/3)) / (3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 11 2020