cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A329289 Expansion of g.f. (1 + x) * (1 + x^2) * Product_{k>=1} (1 + x^k).

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 11, 14, 18, 23, 29, 36, 45, 55, 67, 82, 99, 119, 143, 170, 202, 240, 283, 333, 391, 457, 533, 621, 721, 835, 966, 1114, 1282, 1474, 1690, 1935, 2213, 2525, 2877, 3274, 3719, 4219, 4781, 5409, 6112, 6900, 7778, 8758, 9852, 11068, 12422
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2020

Keywords

Comments

Number of partitions of n into distinct parts if there are two types of 1's and two types of 2's.

Crossrefs

Programs

  • Maple
    series(1/2 * add( x^((n-2)*(n-3)/2) / mul(1 - x^k, k = 1..n), n = 0..12), x, 51):
    seq(coeftayl(%, x = 0, n), n = 0..50); # Peter Bala, Feb 03 2025
  • Mathematica
    nmax = 50; CoefficientList[Series[(1 + x) (1 + x^2) Product[(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[(-1)^(k/d + 1) If[d < 3, 2, 1] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 50}]

Formula

a(n) = A036469(n) - A036469(n-4).
a(n) ~ exp(Pi*sqrt(n/3)) / (3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 11 2020
G.f.: A(x) = 1/2 * Sum_{n >= 0} x^((n-2)*(n-3)/2) / (Product_{k = 1..n} 1 - x^k). - Peter Bala, Feb 03 2025
Showing 1-1 of 1 results.