A329403 Prime numbers p such that the sum of the prime numbers up to its square root equals primepi(p).
11, 29, 59, 179, 389, 541, 5399, 12401, 13441, 40241, 81619, 219647, 439367, 1231547, 1263173, 1279021, 1699627, 1718471, 1756397, 1775903, 2603929, 2675927, 2699911, 2799149, 7580569, 7889627, 8206831, 18398983, 18470987, 34456153, 34660711, 34865977, 40564967, 40677407, 40787531
Offset: 1
Keywords
Examples
The square root of the 5th prime (11) is 3, and the sum of prime numbers up to 3 is 2+3 = 5, so 11 is a term of the sequence.
Links
- Juan Moreno Borrallo, An Approximation to the Prime Counting Function Through the Sum of Consecutive Prime Numbers, viXra:1710.0205, 2017.
- Juan Moreno Borrallo, The prime counting function and the sum of prime numbers, viXra:1911.0316, 2019.
- Mathoverflow, Set of prime numbers q such that the sum of the prime numbers p up to its square root equals primepi(q)
Programs
-
Magma
[NthPrime(k):k in [1..100000]| &+PrimesInInterval(1, Floor(Sqrt(NthPrime(k)))) eq k]; // Marius A. Burtea, Nov 13 2019
-
Mathematica
Select[Prime@ Range@ PrimePi[10^6], Total@ Prime@ Range@ PrimePi@ Sqrt[#] == PrimePi@ # &] (* Michael De Vlieger, Dec 27 2019 *)
-
PARI
isok(p) = isprime(p) && (primepi(p) == sum(k=1, sqrtint(p), if (isprime(k), k))); \\ Michel Marcus, Nov 13 2019
Comments