cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329404 Interleave 2*n*(3*n-1), (2*n+1)*(6*n+1) for n >= 0.

Original entry on oeis.org

0, 1, 4, 21, 20, 65, 48, 133, 88, 225, 140, 341, 204, 481, 280, 645, 368, 833, 468, 1045, 580, 1281, 704, 1541, 840, 1825, 988, 2133, 1148, 2465, 1320, 2821, 1504, 3201, 1700, 3605, 1908, 4033, 2128, 4485, 2360, 4961
Offset: 0

Views

Author

Paul Curtz, Nov 13 2019

Keywords

Comments

a(n) + a(n+3) = 21, 21, 69, 69, 153, 153, ...
Hexagonal spiral for A026741:
.
33--17--35--18
/
16 8--17---9--19
/ / \
31 15 5---3---7 10
/ / / \ \
15 7 2 0===1===4==21==>
\ \ \ / / /
29 13 3---1 9 11
\ \ / /
14 6--11---5 23
\ /
27--13--25--12
.
a(n) is the horizontal sequence from 0.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{0,1,4,21,20,65},100] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    concat(0, Vec(x*(1 + 4*x + 18*x^2 + 8*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^3) + O(x^45))) \\ Colin Barker, Nov 13 2019

Formula

a(n) = n * A165355(n-1).
From Colin Barker, Nov 13 2019: (Start)
G.f.: x*(1 + 4*x + 18*x^2 + 8*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 5.
a(n) = (1/4)*(-1)*((-3 + (-1)^n)*n*(-2+3*n)). (End)
From Amiram Eldar, Dec 27 2024: (Start)
Sum_{n>=1} 1/a(n) = Pi/(8*sqrt(3)) + 9*log(3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*Pi/(8*sqrt(3)) - 3*log(3)/8. (End)