A329404 Interleave 2*n*(3*n-1), (2*n+1)*(6*n+1) for n >= 0.
0, 1, 4, 21, 20, 65, 48, 133, 88, 225, 140, 341, 204, 481, 280, 645, 368, 833, 468, 1045, 580, 1281, 704, 1541, 840, 1825, 988, 2133, 1148, 2465, 1320, 2821, 1504, 3201, 1700, 3605, 1908, 4033, 2128, 4485, 2360, 4961
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Mathematica
LinearRecurrence[{0,3,0,-3,0,1},{0,1,4,21,20,65},100] (* Paolo Xausa, Nov 13 2023 *)
-
PARI
concat(0, Vec(x*(1 + 4*x + 18*x^2 + 8*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^3) + O(x^45))) \\ Colin Barker, Nov 13 2019
Formula
a(n) = n * A165355(n-1).
From Colin Barker, Nov 13 2019: (Start)
G.f.: x*(1 + 4*x + 18*x^2 + 8*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 5.
a(n) = (1/4)*(-1)*((-3 + (-1)^n)*n*(-2+3*n)). (End)
From Amiram Eldar, Dec 27 2024: (Start)
Sum_{n>=1} 1/a(n) = Pi/(8*sqrt(3)) + 9*log(3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*Pi/(8*sqrt(3)) - 3*log(3)/8. (End)
Comments