A329429
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 8, 8, 4, 1, 26, 80, 144, 168, 138, 80, 32, 8, 1, 677, 4160, 13888, 31776, 54792, 74624, 82432, 74944, 56472, 35296, 18208, 7664, 2580, 672, 128, 16, 1, 458330, 5632640, 36109952, 158572864, 531441232, 1439520512, 3264101376, 6342205824
Offset: 0
Rows 0..4:
1;
1, 1;
2, 2, 1;
5, 8, 8, 4, 1;
26, 80, 144, 168, 138, 80, 32, 8, 1.
Rows 0..4, the polynomials u(n,x):
1,
1 + x^2,
2 + 2 x^2 + x^4,
5 + 8 x^2 + 8 x^4 + 4 x^6 + x^8,
26 + 80 x^2 + 144 x^4 + 168 x^6 + 138 x^8 + 80 x^10 + 32 x^12 + 8 x^14 + x^16.
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
-
f[x_] := x^2 + 1; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329429 polynomials u(n,x) *)
Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 7}] (* A329429 array *)
A329432
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 1, 2, 3, 8, 8, 19, 96, 224, 256, 128, 723, 7296, 35456, 105472, 208384, 278528, 245760, 131072, 32768, 1045459, 21100032, 209001984, 1339772928, 6194997248, 21845442560, 60641837056, 134967984128, 243130040320, 355391766528, 419950493696, 396881821696
Offset: 0
Rows 0..4:
1;
1, 2;
3, 8, 8;
19, 96, 224, 256, 128;
723, 7296, 35456, 105472, 208384, 278528, 245760, 131072, 32768.
Rows 0..4, the polynomials u(n,x):
1,
1 + 2 x^2
3 + 8 x^2 + 8 x^4
19 + 96 x^2 + 224 x^4 + 256 x^6 + 128 x^8
723 + 7296 x^2 + 35456 x^4 + 105472 x^6 + 208384 x^8 + 278528 x^10 + 245760 x^12 + 131072 x^14 + 32768 x^16.
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
-
f[x_] := 2 x^2 + 1; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329432 polynomials u(n,x) *)
Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 5}] (* A329432 array *)
A329431
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 38, 48, 28, 8, 1, 1446, 3648, 4432, 3296, 1628, 544, 120, 16, 1, 2090918, 10550016, 26125248, 41867904, 48398416, 42666880, 29610272, 16475584, 7419740, 2711424, 800992, 189248, 35064, 4928, 496, 32, 1, 4371938082726, 44118436709376
Offset: 0
Rows 0..4:
1;
2, 1;
6, 4, 1;
38, 48, 28, 8, 1;
1446, 3648, 4432, 3296, 1628, 544, 120, 16, 1.
Rows 0..4, the polynomials u(n,x):
1;
2 + x^2;
6 + 4 x^2 + x^4;
38 + 48 x^2 + 28 x^4 + 8 x^6 + x^8;
1446 + 3648 x^2 + 4432 x^4 + 3296 x^6 + 1628 x^8 + 544 x^10 + 120 x^12 + 16 x^14 + x^16.
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
-
f[x_] := x^2 + 2; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329431 polynomials u(n,x) *)
Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 5}] (* A329431 array *)
A329433
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 3, 1, 12, 6, 1, 147, 144, 60, 12, 1, 21612, 42336, 38376, 20808, 7350, 1728, 264, 24, 1, 467078547, 1829931264, 3451101120, 4148777664, 3552268752, 2294085888, 1154824416, 461895840, 148272828, 38314944, 7942320, 1306800, 167340, 16128, 1104, 48, 1
Offset: 0
Rows 0..4:
1;
3, 1;
12, 6, 1;
147, 144, 60, 12, 1;
21612, 42336, 38376, 20808, 7350, 1728, 264, 24, 1.
Rows 0..4, the polynomials u(n,x):
1;
3 + x^2;
12 + 6 x^2 + x^4;
147 + 144 x^2 + 60 x^4 + 12 x^6 + x^8;
21612 + 42336 x^2 + 38376 x^4 + 20808 x^6 + 7350 x^8 + 1728 x^10 + 264 x^12 + 24 x^14 + x^16.
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
-
f[x_] := x^2 + 3; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329433 polynomials u(n,x) *)
Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 5}] (* A329433 array *)
A329441
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 3, 2, 21, 24, 8, 885, 2016, 1824, 768, 128, 1566453, 7136640, 14585472, 17427456, 13300224, 6635520, 2113536, 393216, 32768, 4907550002421, 44716844551680, 193253086462464, 525562214510592, 1006302608418816, 1438003249348608, 1586056913289216
Offset: 0
Rows 0..4:
1;
3, 2;
21, 24, 8;
885, 2016, 1824, 768, 128;
1566453, 7136640, 14585472, 17427456, 13300224, 6635520, 2113536, 393216, 32768.
Rows 0..4, the polynomials u(n,x):
1;
3 + 2 x^2;
21 + 24 x^2 + 8 x^4;
885 + 2016 x^2 + 1824 x^4 + 768 x^6 + 128 x^8;
1566453 + 7136640 x^2 + 14585472 x^4 + 17427456 x^6 + 13300224 x^8 + 6635520 + x^10 + 2113536 x^12 + 393216 x^14 +
32768 x^16.
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
-
f[x_] := 2 x^2 + 3; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329441 polynomials u(n,x) *)
Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 5}] (* A329441 array *)
A329442
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 2, 3, 14, 36, 27, 590, 3024, 6156, 5832, 2187, 1044302, 10704960, 49225968, 132339744, 227246796, 255091680, 182815704, 76527504, 14348907, 3271700001614, 67075266827520, 652229166810816, 3990988066439808, 17193623473530864, 55281675697126272
Offset: 0
Rows 0..4:
1;
2, 3;
14, 36, 27;
590, 3024, 6156, 5832, 2187;
1044302, 10704960, 49225968, 132339744, 227246796, 255091680, 182815704, 76527504, 14348907.
Rows 0..4, the polynomials u(n,x):
1;
2 + 3 x^2;
14 + 36 x^2 + 27 x^4;
590 + 3024 x^2 + 6156 x^4 + 5832 x^6 + 2187 x^8;
1044302 + 10704960 x^2 + 49225968 x^4 + 132339744 x^6 + 227246796 x^8 + 255091680 x^10 + 182815704 x^12 + 76527504
x^14 + 14348907 x^16.
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
-
f[x_] := 3 x^2 + 2; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329442 polynomials u(n,x) *)
Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 5}] (* A329442 array *)
Showing 1-6 of 6 results.
Comments