cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A329429 Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 8, 8, 4, 1, 26, 80, 144, 168, 138, 80, 32, 8, 1, 677, 4160, 13888, 31776, 54792, 74624, 82432, 74944, 56472, 35296, 18208, 7664, 2580, 672, 128, 16, 1, 458330, 5632640, 36109952, 158572864, 531441232, 1439520512, 3264101376, 6342205824
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2019

Keywords

Comments

Let f(x) = x^2 + 1, u(0,x) = 1, u(n,x) = f(u(n-1,x)), and p(n,x) = u(n,sqrt(x)). Except for the first term, the sequence (p(n,0)) = (1, 1, 5, 26, 677, ...) is found in A003095 and A008318. This is a strong divisibility sequence, as implied by Dickson's record of a statement by J. J. Sylvester proved by W. S. Foster in 1889.

Examples

			Rows 0..4:
   1;
   1,  1;
   2,  2,   1;
   5,  8,   8,   4,   1;
  26, 80, 144, 168, 138, 80, 32, 8, 1.
Rows 0..4, the polynomials u(n,x):
  1,
  1 + x^2,
  2 + 2 x^2 + x^4,
  5 + 8 x^2 + 8 x^4 + 4 x^6 + x^8,
  26 + 80 x^2 + 144 x^4 + 168 x^6 + 138 x^8 + 80 x^10 + 32 x^12 + 8 x^14 + x^16.
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.

Crossrefs

Programs

  • Mathematica
    f[x_] := x^2 + 1;  u[0, x_] := 1;
    u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
    Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329429 polynomials u(n,x) *)
    Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 7}]  (* A329429 array *)

Formula

p(n,0) = (1, 1, 2, 5, 26, 677, 458330, ...)
p(n,1) = (1, 2, 5, 26, 677, 458330, ...)
p(n,2) = (2, 5, 26, 677, 458330, ...)
p(n,5) = (5, 26, 677, 458330, ...)
p(n,26) = (26, 677, 458330, ...), etc.;
that is, p(n,p(k,0)) = p(n+k-2,0); there are similar identities for other sequences p(n,h).

A329432 Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 1, 2, 3, 8, 8, 19, 96, 224, 256, 128, 723, 7296, 35456, 105472, 208384, 278528, 245760, 131072, 32768, 1045459, 21100032, 209001984, 1339772928, 6194997248, 21845442560, 60641837056, 134967984128, 243130040320, 355391766528, 419950493696, 396881821696
Offset: 0

Views

Author

Clark Kimberling, Nov 23 2019

Keywords

Comments

Let f(x) = 2 x^2 + 1, u(0,x) = 1, u(n,x) = f(u(n-1),x), and p(n,x) = u(n,sqrt(x)). Then the sequence (p(n,0)) = (1, 1, 3, 19, 723, 1045459, ... ) is a strong divisibility sequence, as implied by Dickson's record of a statement by J. J. Sylvester proved by W. S. Foster in 1889.

Examples

			Rows 0..4:
  1;
  1, 2;
  3, 8, 8;
  19, 96, 224, 256, 128;
  723, 7296, 35456, 105472, 208384, 278528, 245760, 131072, 32768.
Rows 0..4, the polynomials u(n,x):
  1,
  1 + 2 x^2
  3 + 8 x^2 + 8 x^4
  19 + 96 x^2 + 224 x^4 + 256 x^6 + 128 x^8
  723 + 7296 x^2 + 35456 x^4 + 105472 x^6 + 208384 x^8 + 278528 x^10 + 245760 x^12 + 131072 x^14 + 32768 x^16.
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.

Crossrefs

Programs

  • Mathematica
    f[x_] := 2 x^2 + 1;  u[0, x_] := 1;
    u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
    Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329432 polynomials u(n,x) *)
    Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 5}]  (* A329432 array *)

A329430 Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 1, 9, 36, 90, 147, 171, 144, 87, 36, 9, 1, 730, 8748, 56862, 257337, 895941, 2528172, 5967108, 12025098, 20984508, 32024268, 43036029, 51168267, 53983503, 50609772, 42164064, 31176036, 20403009, 11768247, 5946156, 2610171, 984420, 314262, 83214, 17766, 2934, 351, 27, 1
Offset: 0

Views

Author

Clark Kimberling, Nov 23 2019

Keywords

Comments

Let f(x) = x^3 + 1, u(0,x) = 1, u(n,x) = f(u(n-1),x), and p(n,x) = u(n,sqrt(x)).
Then the sequence (p(n,0)) = (1,1,2,9,730, ... ) is a strong divisibility sequence, as implied by Dickson's record of a statement by J. J. Sylvester proved by W. S. Foster in 1889.

Examples

			Rows 0..3:
  1;
  1, 1;
  2, 3, 3, 1;
  9, 36, 90, 147, 171, 144, 87, 36, 9, 1.
Rows 0..3, the polynomials u(n,x):
  1;
  1 + x^3;
  2 + 3 x^3 + 3 x^6 + x^9;
  9 + 36 x^3 + 90 x^6 + 147 x^9 + 171 x^12 + 144 x^15 + 87 x^18 + 36 x^21 + 9 x^24 + x^27.
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.

Crossrefs

Programs

  • Mathematica
    f[x_] := x^3 + 1;  u[0, x_] := 1;
    u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
    Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329430 polynomials u(n,x) *)
    Table[CoefficientList[u[n, x^(1/3)], x], {n, 0, 5}]  (* A329430 array *)

A329431 Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 38, 48, 28, 8, 1, 1446, 3648, 4432, 3296, 1628, 544, 120, 16, 1, 2090918, 10550016, 26125248, 41867904, 48398416, 42666880, 29610272, 16475584, 7419740, 2711424, 800992, 189248, 35064, 4928, 496, 32, 1, 4371938082726, 44118436709376
Offset: 0

Views

Author

Clark Kimberling, Nov 23 2019

Keywords

Comments

Let f(x) = x^2 + 2, u(0,x) = 1, u(n,x) = f(u(n-1),x), and p(n,x) = u(n,sqrt(x)).
Then the sequence (p(n,0)) = (1,2,6,38,1446, ... ) is a strong divisibility sequence, as implied by Dickson's record of a statement by J. J. Sylvester proved by W. S. Foster in 1889. p(n,0) = A072191(n) for n >= 1.

Examples

			Rows 0..4:
  1;
  2, 1;
  6, 4, 1;
  38, 48, 28, 8, 1;
  1446, 3648, 4432, 3296, 1628, 544, 120, 16, 1.
Rows 0..4, the polynomials u(n,x):
  1;
  2 + x^2;
  6 + 4 x^2 + x^4;
  38 + 48 x^2 + 28 x^4 + 8 x^6 + x^8;
  1446 + 3648 x^2 + 4432 x^4 + 3296 x^6 + 1628 x^8 + 544 x^10 + 120 x^12 + 16 x^14 + x^16.
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.

Crossrefs

Programs

  • Mathematica
    f[x_] := x^2 + 2;  u[0, x_] := 1;
    u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
    Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329431 polynomials u(n,x) *)
    Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 5}]  (* A329431 array *)

A329471 a(n) = a(n-1)^2 + 3 for n >=2 , where a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 12, 147, 21612, 467078547, 218162369067631212, 47594819277201331861096436836588947, 2265266822029455509816214491130485582138030749246532017266850242568812
Offset: 0

Views

Author

Clark Kimberling, Dec 31 2019

Keywords

Comments

(a(n)) is a strong divisibility sequence.

Crossrefs

Cf. A329433.

Programs

  • Mathematica
    f[x_] := x^2 + 3; u[0, x_] := 1;
    u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
    Table [u[n, x] /. x -> 0, {n, 0, 10}]

Formula

a(n) = p(n,0), where p(n,x) is polynomial defined in A329433.
Showing 1-5 of 5 results.