A329429
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 8, 8, 4, 1, 26, 80, 144, 168, 138, 80, 32, 8, 1, 677, 4160, 13888, 31776, 54792, 74624, 82432, 74944, 56472, 35296, 18208, 7664, 2580, 672, 128, 16, 1, 458330, 5632640, 36109952, 158572864, 531441232, 1439520512, 3264101376, 6342205824
Offset: 0
Rows 0..4:
1;
1, 1;
2, 2, 1;
5, 8, 8, 4, 1;
26, 80, 144, 168, 138, 80, 32, 8, 1.
Rows 0..4, the polynomials u(n,x):
1,
1 + x^2,
2 + 2 x^2 + x^4,
5 + 8 x^2 + 8 x^4 + 4 x^6 + x^8,
26 + 80 x^2 + 144 x^4 + 168 x^6 + 138 x^8 + 80 x^10 + 32 x^12 + 8 x^14 + x^16.
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
-
f[x_] := x^2 + 1; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329429 polynomials u(n,x) *)
Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 7}] (* A329429 array *)
A329432
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 1, 2, 3, 8, 8, 19, 96, 224, 256, 128, 723, 7296, 35456, 105472, 208384, 278528, 245760, 131072, 32768, 1045459, 21100032, 209001984, 1339772928, 6194997248, 21845442560, 60641837056, 134967984128, 243130040320, 355391766528, 419950493696, 396881821696
Offset: 0
Rows 0..4:
1;
1, 2;
3, 8, 8;
19, 96, 224, 256, 128;
723, 7296, 35456, 105472, 208384, 278528, 245760, 131072, 32768.
Rows 0..4, the polynomials u(n,x):
1,
1 + 2 x^2
3 + 8 x^2 + 8 x^4
19 + 96 x^2 + 224 x^4 + 256 x^6 + 128 x^8
723 + 7296 x^2 + 35456 x^4 + 105472 x^6 + 208384 x^8 + 278528 x^10 + 245760 x^12 + 131072 x^14 + 32768 x^16.
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
-
f[x_] := 2 x^2 + 1; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329432 polynomials u(n,x) *)
Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 5}] (* A329432 array *)
A329430
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 1, 1, 2, 3, 3, 1, 9, 36, 90, 147, 171, 144, 87, 36, 9, 1, 730, 8748, 56862, 257337, 895941, 2528172, 5967108, 12025098, 20984508, 32024268, 43036029, 51168267, 53983503, 50609772, 42164064, 31176036, 20403009, 11768247, 5946156, 2610171, 984420, 314262, 83214, 17766, 2934, 351, 27, 1
Offset: 0
Rows 0..3:
1;
1, 1;
2, 3, 3, 1;
9, 36, 90, 147, 171, 144, 87, 36, 9, 1.
Rows 0..3, the polynomials u(n,x):
1;
1 + x^3;
2 + 3 x^3 + 3 x^6 + x^9;
9 + 36 x^3 + 90 x^6 + 147 x^9 + 171 x^12 + 144 x^15 + 87 x^18 + 36 x^21 + 9 x^24 + x^27.
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
-
f[x_] := x^3 + 1; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329430 polynomials u(n,x) *)
Table[CoefficientList[u[n, x^(1/3)], x], {n, 0, 5}] (* A329430 array *)
A329431
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 38, 48, 28, 8, 1, 1446, 3648, 4432, 3296, 1628, 544, 120, 16, 1, 2090918, 10550016, 26125248, 41867904, 48398416, 42666880, 29610272, 16475584, 7419740, 2711424, 800992, 189248, 35064, 4928, 496, 32, 1, 4371938082726, 44118436709376
Offset: 0
Rows 0..4:
1;
2, 1;
6, 4, 1;
38, 48, 28, 8, 1;
1446, 3648, 4432, 3296, 1628, 544, 120, 16, 1.
Rows 0..4, the polynomials u(n,x):
1;
2 + x^2;
6 + 4 x^2 + x^4;
38 + 48 x^2 + 28 x^4 + 8 x^6 + x^8;
1446 + 3648 x^2 + 4432 x^4 + 3296 x^6 + 1628 x^8 + 544 x^10 + 120 x^12 + 16 x^14 + x^16.
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
-
f[x_] := x^2 + 2; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329431 polynomials u(n,x) *)
Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 5}] (* A329431 array *)
A329471
a(n) = a(n-1)^2 + 3 for n >=2 , where a(0) = 1, a(1) = 3.
Original entry on oeis.org
1, 3, 12, 147, 21612, 467078547, 218162369067631212, 47594819277201331861096436836588947, 2265266822029455509816214491130485582138030749246532017266850242568812
Offset: 0
-
f[x_] := x^2 + 3; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Table [u[n, x] /. x -> 0, {n, 0, 10}]
Showing 1-5 of 5 results.
Comments