cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329467 Expansion of Product_{i>=1, j>=1} (1 + x^(i*j)) * (1 + x^(2*i*j)).

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 31, 47, 81, 126, 204, 308, 487, 720, 1098, 1613, 2395, 3461, 5061, 7213, 10362, 14633, 20712, 28926, 40497, 56000, 77527, 106349, 145791, 198339, 269678, 364106, 491125, 658708, 882077, 1175392, 1563884, 2071363, 2739095, 3608040, 4744058, 6216087
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 13 2019

Keywords

Comments

Weigh transform of A069735.

Crossrefs

Programs

  • Mathematica
    nmax = 41; CoefficientList[Series[Product[((1 - x^(4 k))/(1 - x^k))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d If[EvenQ[d], DivisorSigma[0, d] + DivisorSigma[0, d/2], DivisorSigma[0, d]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 41}]

Formula

G.f.: Product_{i>=1, j>=1} (1 + x^(2*i*j)) / (1 - x^(i*(2*j - 1))).
G.f.: Product_{k>=1} ((1 - x^(4*k)) / (1 - x^k))^A000005(k).
G.f.: Product_{k>=1} (1 + x^k)^A069735(k).