A328882 a(n) = n - 2^(sum of digits of n).
-1, -1, -2, -5, -12, -27, -58, -121, -248, -503, 8, 7, 4, -3, -18, -49, -112, -239, -494, -1005, 16, 13, 6, -9, -40, -103, -230, -485, -996, -2019, 22, 15, 0, -31, -94, -221, -476, -987, -2010, -4057, 24, 9, -22, -85, -212, -467, -978, -2001, -4048, -8143, 18, -13, -76, -203, -458, -969, -1992, -4039, -8134, -16325, -4
Offset: 0
Examples
a(0) = 0 - 2^0 = -1. a(11) = 11 - 2^(1+1) = 7. a(32) = 32 - 2^(3+2) = 0. The next time 0 occurs is at a(1180591620717411303424) = 1180591620717411303424 - 2^(70)=0. The only known occurrence of 1 is when n=513: a(513) = 513 - 2^(5+1+3) = 1. Smallest n such that a(n) = k, from _N. J. A. Sloane_, Nov 16 2019: k = 0 1 2 3 4 5 6 7 8 9 10 ... n = 32 513 2^103+2 1027 12 133 22 11 10 41 522 ... k = -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 11 ... n = 0 2 13 60 3 1018 2^103-7 504 23 2^18-10 ? ...
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..9999
Programs
-
Mathematica
Array[# - 2^Total[IntegerDigits@ #] &, 61, 0] (* Michael De Vlieger, Oct 30 2019 *)
-
PARI
a(n) = n - 2^sumdigits(n); \\ Michel Marcus, Oct 30 2019
Formula
a(n) = n - 2^A007953(n).
Extensions
More terms from Michel Marcus, Oct 30 2019
Comments