A329525 a(n) is the smallest positive number k such that k and k+n are both abundant.
5775, 18, 942, 20, 940, 12, 945, 12, 936, 20, 4725, 12, 4712, 40, 930, 20, 928, 12, 2816, 20, 924, 18, 945, 12, 920, 30, 918, 12, 2176, 12, 3465, 24, 912, 20, 910, 12, 7208, 18, 906, 20, 4095, 12, 5312, 12, 900, 20, 945, 12, 896, 20, 894, 18, 4672, 12, 945, 24
Offset: 1
Keywords
Examples
Number 5775 is the smallest abundant number k such that k+1 = 5576 is also abundant.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Magma
[Min([m: m in[1..10^4] | SumOfDivisors(m) gt 2*m and SumOfDivisors(m+n) gt 2*(m+n)]): n in [1..60]];
-
PARI
A329525(n) = for(k=1, oo, if((sigma(k) > (k+k)) && (sigma(n+k) > 2*(n+k)), return(k))); \\ Antti Karttunen, Nov 15 2019
Comments