cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329530 a(n) = n * (7*binomial(n, 2) + 1).

Original entry on oeis.org

0, 1, 16, 66, 172, 355, 636, 1036, 1576, 2277, 3160, 4246, 5556, 7111, 8932, 11040, 13456, 16201, 19296, 22762, 26620, 30891, 35596, 40756, 46392, 52525, 59176, 66366, 74116, 82447, 91380, 100936, 111136, 122001, 133552, 145810, 158796, 172531, 187036, 202332, 218440
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2019

Keywords

Comments

Centered heptagonal prism numbers.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 144.

Crossrefs

Centered m-gonal prism numbers: A100175 (m = 3), A059722 (m = 4), A006564 (m = 5), A005915 (m = 6), this sequence (m = 7), A139757 (m = 8), A006566 (m = 9).

Programs

  • Mathematica
    Table[n (7 Binomial[n, 2] + 1), {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 + 12 x + 8 x^2)/(1 - x)^4, {x, 0, nmax}], x]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 16, 66}, 41]

Formula

G.f.: x * (1 + 12*x + 8*x^2) / (1 - x)^4.
E.g.f.: exp(x) * x * (2 + 14*x + 7*x^2) / 2.
a(n) = n * (7*n^2 - 7*n + 2) / 2.
a(n) = n * (7*A000217(n-1) + 1).
a(n) = n * A069099(n).