cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329541 Triangle read by rows: T(n,k) is the number of colored digraphs on n nodes with exactly k colors assigned in a fix order according the node count (1 <= k <= n).

Original entry on oeis.org

1, 3, 4, 16, 36, 64, 218, 1856, 2112, 4096, 9608, 136376, 445440, 528384, 1048576, 1540944, 62020640, 270506880, 449511424, 537919488, 1073741824, 882033440, 55259421024, 435010671104, 1101584588800, 1834672455680, 2200096997376, 4398046511104
Offset: 1

Views

Author

Peter Dolland, Nov 16 2019

Keywords

Comments

The values are just subtotals of the rows of the irregular triangle A328773.
Colors C_1,...,C_k are assigned to n nodes in the way that a_i >= a_(i+1) >= 1 for 1 <= i < k, where a_i denotes the number of nodes colored with C_i.
T(n,k) gives the number of digraphs (see A000273) without restrictions, where nodes of the same color are not differentiated.
The order of the colors effects, that only one color scheme has to be considered for a given color count. If such an order may not be presupposed, you should note A329546.

Examples

			Partitions for n=4, k=2: [3,1] and [2,2] with indices 2 and 3: T(4,2) = Sum_{i=2,3} A328773(4,i) = 752 + 1104 = 1856.
Partitions for n=6, k=3: [4,1,1], [3,2,1], [2,2,2] with indices 4, 6, 8: T(6,3) = Sum_{i=4,6,8} A328773(6,i) = 45277312 + 90196736 + 135032832 = 270506880.
Triangle T(n,k) begins:
        1
        3        4
       16       36        64
      218     1856      2112      4096
     9608   136376    445440    528384   1048576
  1540944 62020640 270506880 449511424 537919488 1073741824
  ...
		

Crossrefs

Cf. A000273 (digraphs with one color), A053763 (digraphs with n colors), A328773 (digraphs to a given color scheme). A329546 (digraphs with unordered colors).

Programs

  • PARI
    \\ here C(p) computes A328773 sequence value for given partition.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
    C(p)={((i, v)->if(i>#p, 2^edges(v), my(s=0); forpart(q=p[i], s+=permcount(q)*self()(i+1, concat(v, Vec(q)))); s/p[i]!))(1, [])}
    Row(n)={[vecsum(apply(C, vecsort([Vecrev(p) | p<-partitions(n),#p==m], , 4))) | m<-[1..n]]}
    { for(n=0, 10, print(Row(n))) }

Formula

T(n,1) = A000273(n) = A328773(n,1).
T(n,n) = 2^(n^2-n) = A053763(n) = A328773(n,A000041(n)).
T(n,n-1) = A328773(n,A000041(n)-1).
T(n,k) = Sum_{i=1..A000041(n), A063008(n,i) encodes a partition p with k=#p} A328773(n,i).