A329575 Numbers whose smallest Fermi-Dirac factor is 3.
3, 12, 15, 21, 27, 33, 39, 48, 51, 57, 60, 69, 75, 84, 87, 93, 105, 108, 111, 123, 129, 132, 135, 141, 147, 156, 159, 165, 177, 183, 189, 192, 195, 201, 204, 213, 219, 228, 231, 237, 240, 243, 249, 255, 267, 273, 276, 285, 291, 297, 300, 303, 309, 321, 327, 336, 339, 345
Offset: 1
Keywords
Examples
6 is the product of the following terms of A050376: 2, 3. These terms include 2, so 6 is not in the sequence. 12 is the product of the following terms of A050376: 3, 4. These terms include 3, but not 2, so 12 is in the sequence. 20 is the product of the following terms of A050376: 4, 5. These terms do not include 3, so 20 is not in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Jan Snellman, Greedy Regular Convolutions, arXiv:2504.02795 [math.NT], 2025.
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^(2^IntegerExponent[e, 2]); fdmin[n_] := Min @@ f @@@ FactorInteger[n]; Select[Range[350], fdmin[#] == 3 &] (* Amiram Eldar, Nov 27 2020 *)
-
PARI
isok(m) = core(m) % 6 == 3; \\ Michel Marcus, May 01 2020
-
Python
from itertools import count from sympy import integer_log def A329575(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(integer_log(x,9)[0]+1): i2 = 9**i for j in count(0,2): k = i2<
x: break m = x//k c -= (m-1)//6+(m-5)//6+2 return c return 3*bisection(f,n,n) # Chai Wah Wu, Apr 10 2025
Formula
A223490(a(n)) = 3.
A007913(a(n)) == 3 (mod 6).
A059897(2, a(n)) = 2 * a(n).
A059897(3, a(n)) * 3 = a(n).
{a(n) : n >= 1} = {k : 3 * A307150(k) = 2 * k}.
A003159 = {a(n) / 3 : n >= 1} U {a(n) : n >= 1}.
A036668 = {a(n) / 3 : n >= 1} U {a(n) * 2 : n >= 1}.
A145204 \ {0} = {a(n) : n >= 1} U {a(n) * 2 : n >= 1}.
a(n) = 3*A339690(n). - Chai Wah Wu, Apr 10 2025
Comments