cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A347117 Möbius transform of A329603.

Original entry on oeis.org

2, 3, 6, 10, 16, 0, 48, 30, 12, 104, 96, 12, 240, 192, 8, 90, 336, 54, 576, 240, 16, 504, 720, 36, 24, 600, 40, 480, 1056, -122, 1680, 270, 96, 1104, 96, 132, 1920, 1224, 144, 720, 2736, 1064, 3360, 1200, 0, 1920, 3696, 108, 60, 126, 624, 1680, 4416, 422, 336, 1440, 768, 3144, 5616, -228, 6960, 3120, 416, 810, 624
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2021

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A347117(n) = sumdiv(n,d,moebius(n/d)*A329603(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A329603(d).

A353268 The least number with the same prime factorization pattern (A348717) as A329603(n) = A005940(1+(1+(3*A156552(n)))).

Original entry on oeis.org

2, 2, 8, 6, 18, 2, 50, 12, 20, 8, 98, 14, 242, 18, 32, 24, 338, 6, 578, 54, 72, 50, 722, 28, 42, 98, 60, 150, 1058, 2, 1682, 48, 200, 242, 162, 70, 1922, 338, 392, 108, 2738, 8, 3362, 294, 44, 578, 3698, 56, 110, 20, 968, 726, 4418, 12, 450, 300, 1352, 722, 5618, 26, 6962, 1058, 500, 96, 882, 18, 7442, 1014, 2312
Offset: 1

Views

Author

Antti Karttunen, Apr 09 2022

Keywords

Crossrefs

Coincides with A352892 on even n, and with A329603 on odd n.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
    A353268(n) = A348717(A329603(n));

Formula

a(n) = A348717(A329603(n)).
For all n >= 1, a(2n) = A352892(2n), a(2n-1) = A329603(2n-1).

A332449 a(n) = A005940(1+(3*A156552(n))).

Original entry on oeis.org

1, 4, 9, 10, 25, 16, 49, 30, 21, 36, 121, 22, 169, 100, 81, 90, 289, 40, 361, 250, 225, 196, 529, 66, 55, 484, 105, 490, 841, 64, 961, 270, 441, 676, 625, 154, 1369, 1156, 1089, 750, 1681, 144, 1849, 1210, 39, 1444, 2209, 198, 91, 84, 1521, 1690, 2809, 120, 1225, 1470, 2601, 2116, 3481, 34, 3721, 3364, 1029, 810, 3025, 400
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2020

Keywords

Crossrefs

Cf. A329609 (terms sorted into ascending order).
Cf. A000290, A003961, A005117 (positions of squares), A005940, A010052, A156552, A277010, A329603, A332450, A332451, A347119, A347120, A353267 [= A348717(a(n))], A353269, A353270 [= gcd(n, a(n))], A353271, A353272, A353273.
Cf. also A332223.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332449(n) = A005940(1+(3*A156552(n)));

Formula

a(n) = A005940(1+(3*A156552(n))).
a(p) = p^2 for all primes p.
a(u) = A332451(u) and A010052(a(u)) = 1 for all squarefree numbers (A005117).
a(A003961(n)) = A003961(a(n)) = A005940(1+(6*A156552(n))).
From Antti Karttunen, Apr 10 2022: (Start)
a(n) = A347119(n) * A000290(A347120(n)) = A353270(n) * A353272(n).
a(A353269(n)) = 1 for all n.
(End)

A329609 Numbers k such that A156552(k) is a multiple of 3.

Original entry on oeis.org

1, 4, 9, 10, 16, 21, 22, 25, 30, 34, 36, 39, 40, 46, 49, 55, 57, 62, 64, 66, 81, 82, 84, 85, 87, 88, 90, 91, 94, 100, 102, 105, 111, 115, 118, 120, 121, 129, 133, 134, 136, 138, 144, 146, 154, 155, 156, 159, 160, 166, 169, 183, 184, 186, 187, 189, 194, 195, 196, 198, 203, 205, 206, 213, 218, 220, 225, 228, 235, 237, 238, 246
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2019

Keywords

Comments

Not a multiplicative semigroup. For example, although 10 and 21 are present, 210 is missing. Compare to A332820. - Antti Karttunen, Jan 17 2023

Crossrefs

Cf. A000290 (subsequence), A156552, A329603, A329604, A332812.
Positions of zeros in A329903, of nonzeros in A341353, of ones in A353269 (characteristic function), A353418 (Dirichlet inverse of char.fun), A359836.
Sequence A332449 sorted into ascending order.
Cf. also A353303, A353304 and A332820.

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    isA329609(n) = !(A156552(n)%3);

A341515 The Collatz or 3x+1 map (A006370) conjugated by unary-binary-encoding (A156552).

Original entry on oeis.org

1, 5, 2, 15, 3, 11, 5, 45, 4, 125, 7, 33, 11, 245, 6, 135, 13, 77, 17, 375, 10, 605, 19, 99, 9, 845, 8, 735, 23, 17, 29, 405, 14, 1445, 15, 231, 31, 1805, 22, 1125, 37, 1331, 41, 1815, 12, 2645, 43, 297, 25, 275, 26, 2535, 47, 539, 21, 2205, 34, 4205, 53, 51, 59, 4805, 20, 1215, 33, 1859, 61, 4335, 38, 3125, 67, 693
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2021

Keywords

Comments

Collatz-conjecture can be formulated via this sequence by postulating that all iterations of a(n), starting from any n > 1, will eventually reach the cycle [2, 5, 3].

Crossrefs

Cf. A005940, A006370, A064989, A156552, A329603, A341510, A347115 (Möbius transform),
Sequences related to iterations of this sequence: A352890, A352891, A352892, A352893, A352894, A352896, A352897, A352898, A352899.
Cf. A341516 (a variant).

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A341515(n) = if(n%2, A064989(n), A329603(n));

Formula

If n is odd, then a(n) = A064989(n), otherwise a(n) = A329603(n) = A341510(n,2*n).
a(n) = A005940(1+A006370(A156552(n))).

A329604 Numbers k such that A156552(k) == 1 (mod 3); numbers k for which A156552(2*k) is a multiple of 3.

Original entry on oeis.org

2, 5, 8, 11, 15, 17, 18, 20, 23, 31, 32, 33, 41, 42, 44, 45, 47, 50, 51, 59, 60, 67, 68, 69, 72, 73, 77, 78, 80, 83, 92, 93, 97, 98, 99, 103, 109, 110, 114, 119, 123, 124, 125, 127, 128, 132, 135, 137, 141, 149, 153, 157, 161, 162, 164, 167, 168, 170, 174, 176, 177, 179, 180, 182, 188, 191, 197, 200, 201, 204, 207, 210, 211, 217, 219, 221, 222
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2019

Keywords

Comments

Even terms of A329609, divided by two.
Numbers k for which A156552(k) == 1 (mod 3). - Antti Karttunen, Feb 27 2020

Crossrefs

Sequence A329603 sorted into ascending order.
Positions of 1's in A329903 and in A332814.
Cf. A001105 (subsequence apart from the initial 0).
Cf. A031368 (a subsequence of prime terms).
Cf. also A332812, A324814, A332821.

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    isA329604(n) = !(A156552(2*n)%3);

Extensions

New primary definition added by Antti Karttunen, Mar 01 2020

A352892 Next even term in the trajectory of map x -> A341515(x), when starting from x=n; a(1) = 1. Here A341515 is the Collatz or 3x+1 map (A006370) conjugated by unary-binary-encoding (A156552).

Original entry on oeis.org

1, 2, 2, 6, 2, 2, 2, 12, 4, 8, 2, 14, 2, 18, 6, 24, 2, 6, 2, 54, 10, 50, 2, 28, 4, 98, 8, 150, 2, 2, 2, 48, 14, 242, 6, 70, 2, 338, 22, 108, 2, 8, 2, 294, 12, 578, 2, 56, 4, 20, 26, 726, 2, 12, 10, 300, 34, 722, 2, 26, 2, 1058, 20, 96, 14, 18, 2, 1014, 38, 32, 2, 140, 2, 1682, 18, 1734, 6, 50, 2, 216, 16, 1922, 2, 686
Offset: 1

Views

Author

Antti Karttunen, Apr 08 2022

Keywords

Crossrefs

Coincides with A353268 on even n, and with A348717 on odd n.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A341515(n) = if(n%2, A064989(n), A329603(n));
    A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
    A352892(n) = A348717(A341515(n));
    
  • PARI
    A352892(n) = if(1==n, n, n = A341515(n); while(n%2, n = A341515(n)); (n)); \\ A slower alternative.

Formula

a(n) = A348717(A341515(n)).
For all n >= 1, a(2n) = A353268(2n), a(2n-1) = A348717(2n-1).
a(p) = 2 for all primes p.
For n > 1, a(n) = A005940(1+A139391(A156552(n))).

A347115 Möbius transform of A341515.

Original entry on oeis.org

1, 4, 1, 10, 2, 5, 4, 30, 2, 118, 6, 12, 10, 236, 2, 90, 12, 64, 16, 240, 4, 594, 18, 36, 6, 830, 4, 480, 22, -116, 28, 270, 6, 1428, 8, 132, 30, 1784, 10, 720, 36, 1076, 40, 1200, 4, 2622, 42, 108, 20, 144, 12, 1680, 46, 458, 12, 1440, 16, 4178, 52, -228, 58, 4772, 8, 810, 20, 1242, 60, 2880, 18, 2752, 66, 396
Offset: 1

Views

Author

Antti Karttunen, Aug 20 2021

Keywords

Crossrefs

Cf. A285702 (odd bisection), A347116 (even bisection).

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A341515(n) = if(n%2, A064989(n), A329603(n));
    A347115(n) = sumdiv(n,d,moebius(n/d)*A341515(d));

Formula

a(n) = A008683(n/d) * A341515(d).

A341510 Symmetric square array A(n,k) = A005940(1+A156552(n)+A156552(k)), read by antidiagonals starting with A(1,1).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 9, 9, 9, 9, 9, 7, 8, 10, 8, 8, 8, 8, 10, 8, 9, 7, 15, 7, 7, 7, 15, 7, 9, 10, 8, 10, 12, 10, 10, 12, 10, 8, 10, 11, 15, 7, 15, 25, 15, 25, 15, 7, 15, 11, 12, 14, 12, 10, 12, 18, 18, 12, 10, 12, 14, 12, 13, 25, 21, 25, 15, 25, 11, 25, 15, 25, 21, 25, 13
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2021

Keywords

Comments

Considered as a binary operation on the positive integers, A(x, y) returns the term of the Doudna-sequence from the position that is the sum of the positions of x and y in the same sequence. (This is based on giving the Doudna-sequence an offset of 0, rather than 1 as used in A005940.) - Peter Munn, Feb 14 2021

Examples

			The top left 16x16 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,  9, 10,  11,  12,  13,  14,  15, 16,
   2,  3,  4,  5,  6,  9, 10,  7,  8, 15,  14,  25,  22,  21,  12, 11,
   3,  4,  5,  6,  9,  8, 15, 10,  7, 12,  21,  18,  33,  20,  25, 14,
   4,  5,  6,  9,  8,  7, 12, 15, 10, 25,  20,  27,  28,  35,  18, 21,
   5,  6,  9,  8,  7, 10, 25, 12, 15, 18,  35,  16,  55,  30,  27, 20,
   6,  9,  8,  7, 10, 15, 18, 25, 12, 27,  30,  11,  42,  45,  16, 35,
   7, 10, 15, 12, 25, 18, 11, 16, 27, 14,  49,  20,  77,  50,  21, 24,
   8,  7, 10, 15, 12, 25, 16, 27, 18, 11,  24,  21,  40,  49,  14, 45,
   9,  8,  7, 10, 15, 12, 27, 18, 25, 16,  45,  14,  63,  24,  11, 30,
  10, 15, 12, 25, 18, 27, 14, 11, 16, 21,  50,  35,  70,  75,  20, 49,
  11, 14, 21, 20, 35, 30, 49, 24, 45, 50,  13,  36, 121,  22,  75, 32,
  12, 25, 18, 27, 16, 11, 20, 21, 14, 35,  36,  45,  60, 125,  30, 75,
  13, 22, 33, 28, 55, 42, 77, 40, 63, 70, 121,  60,  17,  98, 105, 48,
  14, 21, 20, 35, 30, 45, 50, 49, 24, 75,  22, 125,  98,  33,  36, 13,
  15, 12, 25, 18, 27, 16, 21, 14, 11, 20,  75,  30, 105,  36,  35, 50,
  16, 11, 14, 21, 20, 35, 24, 45, 30, 49,  32,  75,  48,  13,  50, 81,
		

Crossrefs

Cf. A341511 (the lower triangular section).
Cf. A003961 (main diagonal), A329603 (skewed diagonal).
Cf. A297165 (row 2 and column 2, when started from its term a(1)).

Programs

  • PARI
    up_to = 105;
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A341510sq(n,k) = A005940(1+A156552(n)+A156552(k));
    A341510list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341510sq(col,(a-(col-1))))); (v); };
    v341510 = A341510list(up_to);
    A341510(n) = v341510[n];

Formula

A(n, k) = A(k, n) = A005940(1 + A156552(n) + A156552(k)).
A(n, n) = A003961(n).
A(n, 2*n) = A(2*n, n) = A329603(n).
A(n, 2) = A(2, n) = A297165(n).

A352893 Number of iterations of map x -> A352892(x) needed to reach x <= 2 when starting from x=n, or -1 if such number is never reached. Here A352892 is the next odd term in the Collatz or 3x+1 map (A139391) conjugated by unary-binary-encoding (A156552).

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 1, 5, 3, 6, 1, 4, 1, 3, 2, 5, 1, 2, 1, 6, 7, 8, 1, 4, 3, 8, 6, 3, 1, 1, 1, 39, 4, 44, 2, 41, 1, 44, 9, 11, 1, 6, 1, 8, 5, 10, 1, 38, 3, 7, 9, 8, 1, 5, 7, 37, 45, 10, 1, 9, 1, 56, 7, 39, 4, 3, 1, 44, 45, 40, 1, 41, 1, 39, 3, 44, 2, 8, 1, 11, 6, 15, 1, 3, 9, 15, 11, 13, 1, 4, 7, 10, 11, 32, 9, 38
Offset: 1

Views

Author

Antti Karttunen, Apr 08 2022

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A341515(n) = if(n%2, A064989(n), A329603(n));
    A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
    A352892(n) = A348717(A341515(n));
    A352893(n) = { my(k=0); while(n>2, n = A352892(n); k++); (k); };
    
  • PARI
    \\ Much faster than above program:
    A139391(n) = my(x = if(n%2, 3*n+1, n/2)); x/2^valuation(x, 2); \\ From A139391
    A286380(n) = { my(k=0); while(n>1, n = A139391(n); k++); (k); };
    A352893(n) = if(1==n,0,A286380(A156552(n)));

Formula

If n <= 2, a(n) = 0, otherwise a(n) = 1 + a(A352892(n)).
For n > 1, a(n) = A286380(A156552(n)).
a(p) = 1 for all odd primes p.
For n >= 1, A352894(n) <= a(n) <= A352890(n).
Showing 1-10 of 19 results. Next