A352893 Number of iterations of map x -> A352892(x) needed to reach x <= 2 when starting from x=n, or -1 if such number is never reached. Here A352892 is the next odd term in the Collatz or 3x+1 map (A139391) conjugated by unary-binary-encoding (A156552).
0, 0, 1, 2, 1, 1, 1, 5, 3, 6, 1, 4, 1, 3, 2, 5, 1, 2, 1, 6, 7, 8, 1, 4, 3, 8, 6, 3, 1, 1, 1, 39, 4, 44, 2, 41, 1, 44, 9, 11, 1, 6, 1, 8, 5, 10, 1, 38, 3, 7, 9, 8, 1, 5, 7, 37, 45, 10, 1, 9, 1, 56, 7, 39, 4, 3, 1, 44, 45, 40, 1, 41, 1, 39, 3, 44, 2, 8, 1, 11, 6, 15, 1, 3, 9, 15, 11, 13, 1, 4, 7, 10, 11, 32, 9, 38
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; A329603(n) = A005940(2+(3*A156552(n))); A341515(n) = if(n%2, A064989(n), A329603(n)); A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717 A352892(n) = A348717(A341515(n)); A352893(n) = { my(k=0); while(n>2, n = A352892(n); k++); (k); };
-
PARI
\\ Much faster than above program: A139391(n) = my(x = if(n%2, 3*n+1, n/2)); x/2^valuation(x, 2); \\ From A139391 A286380(n) = { my(k=0); while(n>1, n = A139391(n); k++); (k); }; A352893(n) = if(1==n,0,A286380(A156552(n)));
Comments