cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A332449 a(n) = A005940(1+(3*A156552(n))).

Original entry on oeis.org

1, 4, 9, 10, 25, 16, 49, 30, 21, 36, 121, 22, 169, 100, 81, 90, 289, 40, 361, 250, 225, 196, 529, 66, 55, 484, 105, 490, 841, 64, 961, 270, 441, 676, 625, 154, 1369, 1156, 1089, 750, 1681, 144, 1849, 1210, 39, 1444, 2209, 198, 91, 84, 1521, 1690, 2809, 120, 1225, 1470, 2601, 2116, 3481, 34, 3721, 3364, 1029, 810, 3025, 400
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2020

Keywords

Crossrefs

Cf. A329609 (terms sorted into ascending order).
Cf. A000290, A003961, A005117 (positions of squares), A005940, A010052, A156552, A277010, A329603, A332450, A332451, A347119, A347120, A353267 [= A348717(a(n))], A353269, A353270 [= gcd(n, a(n))], A353271, A353272, A353273.
Cf. also A332223.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332449(n) = A005940(1+(3*A156552(n)));

Formula

a(n) = A005940(1+(3*A156552(n))).
a(p) = p^2 for all primes p.
a(u) = A332451(u) and A010052(a(u)) = 1 for all squarefree numbers (A005117).
a(A003961(n)) = A003961(a(n)) = A005940(1+(6*A156552(n))).
From Antti Karttunen, Apr 10 2022: (Start)
a(n) = A347119(n) * A000290(A347120(n)) = A353270(n) * A353272(n).
a(A353269(n)) = 1 for all n.
(End)

A352892 Next even term in the trajectory of map x -> A341515(x), when starting from x=n; a(1) = 1. Here A341515 is the Collatz or 3x+1 map (A006370) conjugated by unary-binary-encoding (A156552).

Original entry on oeis.org

1, 2, 2, 6, 2, 2, 2, 12, 4, 8, 2, 14, 2, 18, 6, 24, 2, 6, 2, 54, 10, 50, 2, 28, 4, 98, 8, 150, 2, 2, 2, 48, 14, 242, 6, 70, 2, 338, 22, 108, 2, 8, 2, 294, 12, 578, 2, 56, 4, 20, 26, 726, 2, 12, 10, 300, 34, 722, 2, 26, 2, 1058, 20, 96, 14, 18, 2, 1014, 38, 32, 2, 140, 2, 1682, 18, 1734, 6, 50, 2, 216, 16, 1922, 2, 686
Offset: 1

Views

Author

Antti Karttunen, Apr 08 2022

Keywords

Crossrefs

Coincides with A353268 on even n, and with A348717 on odd n.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A341515(n) = if(n%2, A064989(n), A329603(n));
    A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
    A352892(n) = A348717(A341515(n));
    
  • PARI
    A352892(n) = if(1==n, n, n = A341515(n); while(n%2, n = A341515(n)); (n)); \\ A slower alternative.

Formula

a(n) = A348717(A341515(n)).
For all n >= 1, a(2n) = A353268(2n), a(2n-1) = A348717(2n-1).
a(p) = 2 for all primes p.
For n > 1, a(n) = A005940(1+A139391(A156552(n))).

A353268 The least number with the same prime factorization pattern (A348717) as A329603(n) = A005940(1+(1+(3*A156552(n)))).

Original entry on oeis.org

2, 2, 8, 6, 18, 2, 50, 12, 20, 8, 98, 14, 242, 18, 32, 24, 338, 6, 578, 54, 72, 50, 722, 28, 42, 98, 60, 150, 1058, 2, 1682, 48, 200, 242, 162, 70, 1922, 338, 392, 108, 2738, 8, 3362, 294, 44, 578, 3698, 56, 110, 20, 968, 726, 4418, 12, 450, 300, 1352, 722, 5618, 26, 6962, 1058, 500, 96, 882, 18, 7442, 1014, 2312
Offset: 1

Views

Author

Antti Karttunen, Apr 09 2022

Keywords

Crossrefs

Coincides with A352892 on even n, and with A329603 on odd n.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
    A353268(n) = A348717(A329603(n));

Formula

a(n) = A348717(A329603(n)).
For all n >= 1, a(2n) = A352892(2n), a(2n-1) = A329603(2n-1).
Showing 1-3 of 3 results.