cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A333520 Triangle read by rows: T(n,k) is the number of self-avoiding paths of length 2*(n-1+k) connecting opposite corners in the n X n grid graph (0 <= k <= floor((n-1)^2/2), n >= 1).

Original entry on oeis.org

1, 2, 6, 4, 2, 20, 36, 48, 48, 32, 70, 224, 510, 956, 1586, 2224, 2106, 732, 104, 252, 1200, 3904, 10560, 25828, 58712, 121868, 217436, 300380, 280776, 170384, 61336, 10180, 924, 5940, 25186, 88084, 277706, 821480, 2309402, 6140040, 15130410, 33339900, 62692432, 96096244, 116826664, 110195700, 78154858, 39287872, 12396758, 1879252, 111712
Offset: 1

Views

Author

Seiichi Manyama, Mar 29 2020

Keywords

Examples

			T(3,1) = 4;
   S--*      S--*--*   S  *--*   S
      |            |   |  |  |   |
   *--*         *--*   *--*  *   *  *--*
   |            |            |   |  |  |
   *--*--E      *--E         E   *--*  E
Triangle starts:
=======================================================
n\k|   0     1     2      3      4 ...      8 ...   12
---|---------------------------------------------------
1  |   1;
2  |   2;
3  |   6,    4,    2;
4  |  20,   36,   48,    48,    32;
5  |  70,  224,  510,   956,  1586, ... , 104;
6  | 252, 1200, 3904, 10560, ................. , 10180;
		

Crossrefs

Row sums give A007764.
T(n,0) gives A000984(n-1).
T(n,1) gives A257888(n).
T(n,floor((n-1)^2/2)) gives A121788(n-1).
T(2*n-1,2*(n-1)^2) gives A001184(n-1).

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333520(n):
        if n == 1: return [1]
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, n * n
        paths = GraphSet.paths(start, goal)
        return [paths.len(2 * (n - 1 + k)).len() for k in range((n - 1) ** 2 // 2 + 1)]
    print([i for n in range(1, 8) for i in A333520(n)])
Showing 1-1 of 1 results.