cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329641 a(n) = gcd(A329638(n), A329639(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 6, 1, 5, 1, 10, 1, 16, 2, 6, 1, 1, 1, 18, 1, 18, 1, 22, 1, 46, 1, 22, 1, 10, 1, 30, 14, 82, 2, 1, 1, 256, 2, 22, 1, 1, 1, 66, 1, 226, 1, 46, 1, 1, 8, 130, 1, 1, 1, 70, 2, 748, 1, 42, 1, 1362, 2, 2, 10, 42, 1, 214, 254, 4, 1, 1, 1, 3838, 5, 406, 2, 2, 1, 78, 1, 5458, 1, 26, 2, 12250, 2, 10, 1, 2, 1, 934
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2019

Keywords

Crossrefs

Programs

  • PARI
    A323243(n) = if(1==n,0,sigma(A156552(n)));
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A329644(n) = sumdiv(n,d,moebius(n/d)*((2*A156552(d))-A323243(d)));
    A329641(n) = { my(t=0,u=0); fordiv(n, d, if((d=A329644(d))>0, t +=d, u -= d)); gcd(u,t); };

Formula

a(n) = gcd(A329638(n), A329639(n)).
a(A324201(n)) = A329610(n).