A329721 Irregular triangular array T(n,k) read by rows: T(n,k) is the number of degree n monic polynomials in GF(2)[x] with exactly k distinct factors in its unique factorization into irreducible polynomials.
2, 3, 1, 4, 4, 6, 9, 1, 8, 20, 4, 14, 35, 15, 20, 70, 36, 2, 36, 122, 90, 8, 60, 226, 196, 30, 108, 410, 414, 91, 1, 188, 762, 848, 242, 8, 352, 1390, 1719, 601, 34, 632, 2616, 3406, 1416, 122, 1182, 4879, 6739, 3207, 374, 3, 2192, 9196, 13274, 7026, 1062, 18
Offset: 1
Examples
2; 3, 1; 4, 4; 6, 9, 1; 8, 20, 4; 14, 35, 15; 20, 70, 36, 2; 36, 122, 90, 8; 60, 226, 196, 30; 108, 410, 414, 91, 1; ... T(5,3) = 4 because we have: x(x+1)(x^3+x+1), x(x+1)(x^3 +x^2+1), x^2(x+1)(x^2+x+1), x(x+1)^2(x^2+x+1).
Programs
-
Mathematica
nn = 10; a = Table[1/m Sum[MoebiusMu[m/d] 2^d, {d, Divisors[m]}], {m, 1, nn}]; Grid[Map[Select[#, # > 0 &] &, Drop[CoefficientList[Series[Product[(u/(1 - z^m ) - u + 1)^a[[m]], {m, 1, nn}], {z, 0,nn}], {z, u}], 1]]]
Formula
G.f.: Product_{k>=1} (y/(1-x^k) - y + 1)^A001037(k).
Comments