cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329732 a(n) is the smallest m for which there is a sequence n = b_1 < b_2 < ... < b_t = m such that b_1*b_2*...*b_t is a perfect cube.

Original entry on oeis.org

0, 1, 4, 9, 9, 18, 18, 21, 8, 16, 24, 33, 18, 39, 28, 30, 25, 51, 25, 57, 36, 36, 44, 69, 42, 36, 52, 27, 45, 87, 45, 93, 49, 55, 68, 60, 48, 111, 76, 65, 60, 123, 54, 129, 66, 54, 92, 141, 70, 56, 72, 85, 78, 159, 80, 80, 84, 95, 116, 177, 84, 183, 124, 84, 64
Offset: 0

Views

Author

Peter Kagey, Nov 19 2019

Keywords

Comments

For each k there exists a sufficiently large N such that for all primes p > N, a(k*p) = (k+2)*p. [We can prove the proposition is true for N = 64*(t*k)^2, where t = k*(k+1)*(k+2): there is a positive integer x such that t^2*x^3 < k*p < t^2*(x+1)^3 < t^2*x^3*(k+1)/k < (k+1)*p for p > N. So one increasing sequence starting with k*p, ending with (k+2)*p, and having a product which is a perfect cube is (k*p) * (t^2*(x+1)^3) * ((k+1)*p) * ((k+2)*p) = (t*p*(x+1))^3. Noticed that a(k*p) >= (k+2)*p (because b_1*b_2*...*b_t is divisible by p^3) for p > N, so a(k*p) = (k+2)*p. - Jinyuan Wang, Dec 22 2021]

Examples

			For n = 22, one increasing sequence starting with 22, ending with a(22) = 44, and having a product which is a perfect cube is 22 * 24 * 25 * 30 * 32 * 33 * 44 = 2640^3.
		

Crossrefs

A cube analog of R. L. Graham's sequence (A006255).
Cf. A277494.

Formula

a(p) = 3*p for all primes p >= 7.

Extensions

a(42)-a(43) and a(45) from David A. Corneth, Dec 25 2021
More terms from Jinyuan Wang, Dec 26 2021