A328656 Numbers m such that d(m) < d(k) for all k < m, where d is the normalized delta defined as d(m) = (z(m+1) - z(m))*(log(z(m)/(2*Pi))/(2*Pi)) where z(k) is the imaginary part of the k-th Riemann zeta zero.
1, 2, 4, 9, 13, 27, 34, 135, 159, 186, 212, 315, 363, 453, 693, 922, 1496, 4765, 6709, 44555, 73997, 82552, 87761, 95248, 415587, 420891, 1115578, 8546950, 24360732, 41820581, 1048449114, 3570918901, 35016977796
Offset: 1
Keywords
Examples
n | a(n) | d(n) ---+-------+------------ 1 | 1 | 0.88871193 2 | 2 | 0.76669277 3 | 4 | 0.63017799 4 | 9 | 0.57239954 5 | 13 | 0.53062398 6 | 27 | 0.52634271 7 | 34 | 0.38628922 8 | 135 | 0.37238098 9 | 159 | 0.35780768 10 | 186 | 0.32438582 11 | 212 | 0.29105188 12 | 315 | 0.24707528 13 | 363 | 0.24343744 14 | 453 | 0.23631515 15 | 693 | 0.18028720 16 | 922 | 0.13762601 17 | 1496 | 0.08925253 18 | 4765 | 0.04628960 19 | 6709 | 0.04209838 20 | 44555 | 0.04074628
Links
Programs
-
Mathematica
prec = 30; min = 10; aa = {}; Do[kk = N[Im[(ZetaZero[n + 1] - ZetaZero[n])], prec] (Log[N[Im[ZetaZero[n]], prec]/(2 Pi)]/(2 Pi)); If[kk
Comments