A329746 Triangle read by rows where T(n,k) is the number of integer partitions of n > 0 with runs-resistance k, 0 <= k <= n - 1.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 0, 1, 3, 4, 3, 0, 0, 1, 1, 4, 8, 1, 0, 0, 1, 3, 6, 10, 2, 0, 0, 0, 1, 2, 8, 13, 6, 0, 0, 0, 0, 1, 3, 11, 20, 7, 0, 0, 0, 0, 0, 1, 1, 11, 29, 14, 0, 0, 0, 0, 0, 0, 1, 5, 19, 31, 20, 1, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: 1 1 1 1 1 1 1 2 1 1 1 1 2 3 0 1 3 4 3 0 0 1 1 4 8 1 0 0 1 3 6 10 2 0 0 0 1 2 8 13 6 0 0 0 0 1 3 11 20 7 0 0 0 0 0 1 1 11 29 14 0 0 0 0 0 0 1 5 19 31 20 1 0 0 0 0 0 0 1 1 17 50 30 2 0 0 0 0 0 0 0 1 3 25 64 37 5 0 0 0 0 0 0 0 0 1 3 29 74 62 7 0 0 0 0 0 0 0 0 0 Row n = 8 counts the following partitions: (8) (44) (53) (332) (4211) (2222) (62) (422) (32111) (11111111) (71) (611) (431) (3221) (521) (5111) (3311) (22211) (41111) (221111) (311111) (2111111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
- Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003.
Crossrefs
Programs
-
Mathematica
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; Table[Length[Select[IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}]
-
PARI
\\ rr(p) gives runs resistance of partition. rr(p)={my(r=0); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L, i-k); k=i)); p=Vec(L); r++); r} row(n)={my(v=vector(n)); forpart(p=n, v[1+rr(Vec(p))]++); v} { for(n=1, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023
Comments