A329862 Positive integers whose binary expansion has cuts-resistance 2.
3, 4, 6, 9, 11, 12, 13, 18, 19, 20, 22, 25, 26, 37, 38, 41, 43, 44, 45, 50, 51, 52, 53, 74, 75, 76, 77, 82, 83, 84, 86, 89, 90, 101, 102, 105, 106, 149, 150, 153, 154, 165, 166, 169, 171, 172, 173, 178, 179, 180, 181, 202, 203, 204, 205, 210, 211, 212, 213
Offset: 1
Keywords
Examples
The sequence of terms together with their binary expansions begins: 3: 11 4: 100 6: 110 9: 1001 11: 1011 12: 1100 13: 1101 18: 10010 19: 10011 20: 10100 22: 10110 25: 11001 26: 11010 37: 100101 38: 100110 41: 101001 43: 101011 44: 101100 45: 101101 50: 110010
Links
- Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003.
Crossrefs
Positions of 2's in A319416.
Numbers whose binary expansion has cuts-resistance 1 are A000975.
Binary words with cuts-resistance 2 are conjectured to be A027383.
Compositions with cuts-resistance 2 are A329863.
Cuts-resistance of binary expansion without first digit is A319420.
Compositions counted by cuts-resistance are A329861.
Programs
-
Mathematica
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; Select[Range[100],degdep[IntegerDigits[#,2]]==2&]
Comments