cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000975 a(2n) = 2*a(2n-1), a(2n+1) = 2*a(2n)+1 (also a(n) is the n-th number without consecutive equal binary digits).

Original entry on oeis.org

0, 1, 2, 5, 10, 21, 42, 85, 170, 341, 682, 1365, 2730, 5461, 10922, 21845, 43690, 87381, 174762, 349525, 699050, 1398101, 2796202, 5592405, 11184810, 22369621, 44739242, 89478485, 178956970, 357913941, 715827882, 1431655765, 2863311530, 5726623061, 11453246122
Offset: 0

Views

Author

Keywords

Comments

Might be called the "Lichtenberg sequence" after Georg Christoph Lichtenberg, who discussed it in 1769 in connection with the Chinese Rings puzzle (baguenaudier). - Andreas M. Hinz, Feb 15 2017
Number of steps to change from a binary string of n 0's to n 1's using a Gray code. - Jon Stadler (jstadler(AT)coastal.edu)
Popular puzzles such as Spin-Out and The Brain Puzzler are based on the Gray binary system and require a(n) steps to complete for some number n.
Conjecture: {a(n)} also gives all j for which A048702(j) = A000217(j); i.e., if we take the a(n)-th triangular number (a(n)^2 + a(n))/2 and multiply it by 3, we get a(n)-th even-length binary palindrome A048701(a(n)) concatenated from a(n) and its reverse. E.g., a(4) = 10, which is 1010 in binary; the tenth triangular number is 55, and 55*3 = 165 = 10100101 in binary. - Antti Karttunen, circa 1999. (This has been now proved by Paul K. Stockmeyer in his arXiv:1608.08245 paper.) - Antti Karttunen, Aug 31 2016
Number of ways to tie a tie of n or fewer half turns, excluding mirror images. Also number of walks of length n or less on a triangular lattice with the following restrictions; given l, r and c as the lattice axes. 1. All steps are taken in the positive axis direction. 2. No two consecutive steps are taken on the same axis. 3. All walks begin with l. 4. All walks end with rlc or lrc. - Bill Blewett, Dec 21 2000
a(n) is the minimal number of vertices to be selected in a vertex-cover of the balanced tree B_n. - Sen-peng Eu, Jun 15 2002
A087117(a(n)) = A038374(a(n)) = 1 for n > 1; see also A090050. - Reinhard Zumkeller, Nov 20 2003
Intersection of A003754 and A003714; complement of A107907. - Reinhard Zumkeller, May 28 2005
Equivalently, numbers m whose binary representation is effectively, for some number k, both the lazy Fibonacci and the Zeckendorf representation of k (in which case k = A022290(m)). - Peter Munn, Oct 06 2022
a(n+1) gives row sums of Riordan array (1/(1-x), x(1+2x)). - Paul Barry, Jul 18 2005
Total number of initial 01's in all binary words of length n+1. Example: a(3) = 5 because the binary words of length 4 that start with 01 are (01)00, (01)(01), (01)10 and (01)11 and the total number of initial 01's is 5 (shown between parentheses). a(n) = Sum_{k >= 0} k*A119440(n+1, k). - Emeric Deutsch, May 19 2006
In Norway we call the 10-ring puzzle "strikketoy" or "knitwear" (see link). It takes 682 moves to free the two parts. - Hans Isdahl, Jan 07 2008
Equals A002450 and A020988 interlaced. - Zak Seidov, Feb 10 2008
For n > 1, let B_n = the complete binary tree with vertex set V where |V| = 2^n - 1. If VC is a minimum-size vertex cover of B_n, Sen-Peng Eu points out that a(n) = |VC|. It also follows that if IS = V\VC, a(n+1) = |IS|. - K.V.Iyer, Apr 13 2009
Starting with 1 and convolved with [1, 2, 2, 2, ...] = A000295. - Gary W. Adamson, Jun 02 2009
a(n) written in base 2 is sequence A056830(n). - Jaroslav Krizek, Aug 05 2009
This is the sequence A(0, 1; 1, 2; 1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
From Vladimir Shevelev, Jan 30 2012, Feb 13 2012: (Start)
1) Denote by {n, k} the number of permutations of 1, ..., n with the up-down index k (for definition, see comment in A203827). Then max_k{n, k} = {n, a(n)} = A000111(n).
2) a(n) is the minimal number > a(n-1) with the Hamming distance d_H(a(n-1), a(n)) = n. Thus this sequence is the Hamming analog of triangular numbers 0, 1, 3, 6, 10, ... (End)
From Hieronymus Fischer, Nov 22 2012: (Start)
Represented in binary form each term after the second one contains every previous term as a substring.
The terms a(2) = 2 and a(3) = 5 are the only primes. Proof: For even n we get a(n) = 2*(2^(2*n) - 1)/3, which shows that a(n) is even, too, and obviously a(n) > 2 for all even n > 2. For odd n we have a(n) = (2^(n+1) - 1)/3 = (2^((n+1)/2) - 1) * (2^((n+1)/2) + 1)/3. Evidently, at least one of these factors is divisible by 3, both are greater than 6, provided n > 3. Hence it follows that a(n) is composite for all odd n > 3.
Represented as a binary number, a(n+1) has exactly n prime substrings. Proof: Evidently, a(1) = 1_2 has zero and a(2) = 10_2 has 1 prime substring. Let n > 1. Written in binary, a(n+1) is 101010101...01 (if n + 1 is odd) and is 101010101...10 (if n + 1 is even) with n + 1 digits. Only the 2- and 3-digits substrings 10_2 (=2) and 101_2 (=5) are prime substrings. All the other substrings are nonprime since every substring is a previous term and all terms unequal to 2 and 5 are nonprime. For even n + 1, the number of prime substrings equal to 2 = 10_2 is (n+1)/2, and the number of prime substrings equal to 5 = 101_2 is (n-1)/2, makes a sum of n. For odd n + 1 we get n/2 for both, the number of 2's and 5's prime substrings, in any case, the sum is n. (End)
Number of different 3-colorings for the vertices of all triangulated planar polygons on a base with n+2 vertices if the colors of the two base vertices are fixed. - Patrick Labarque, Feb 09 2013
A090079(a(n)) = a(n) and A090079(m) <> a(n) for m < a(n). - Reinhard Zumkeller, Feb 16 2013
a(n) is the number of length n binary words containing at least one 1 and ending in an even number (possibly zero) of 0's. a(3) = 5 because we have: 001, 011, 100, 101, 111. - Geoffrey Critzer, Dec 15 2013
a(n) is the number of permutations of length n+1 having exactly one descent such that the first element of the permutation is an even number. - Ran Pan, Apr 18 2015
a(n) is the sequence of the last row of the Hadamard matrix H(2^n) obtained via Sylvester's construction: H(2) = [1,1;1,-1], H(2^n) = H(2^(n-1))*H(2), where * is the Kronecker product. - William P. Orrick, Jun 28 2015
Conjectured record values of A264784: a(n) = A264784(A155051(n-1)). - Reinhard Zumkeller, Dec 04 2015. (This is proved by Paul K. Stockmeyer in his arXiv:1608.08245 paper.) - Antti Karttunen, Aug 31 2016
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 131", based on the 5-celled von Neumann neighborhood. See A279053 for references and links. - Robert Price, Dec 05 2016
For n > 4, a(n-2) is the second-largest number in row n of A127824. - Dmitry Kamenetsky, Feb 11 2017
Conjecture: a(n+1) is the number of compositions of n with two kinds of parts, n and n', where the order of the 1 and 1' does not matter. For n=2, a(3) = 5 compositions, enumerated as follows: 2; 2'; 1,1; 1',1 = 1',1; 1',1'. - Gregory L. Simay, Sep 02 2017
Conjecture proved by recognizing the appropriate g.f. is x/(1 - x)(1 - x)(1 - 2*x^2 - 2x^3 - ...) = x/(1 - 2*x - x^2 + 2x^3). - Gregory L. Simay, Sep 10 2017
a(n) = 2^(n-1) + 2^(n-3) + 2^(n-5) + ... a(2*k -1) = A002450(k) is the sum of the powers of 4. a(2*k) = 2*A002450(k). - Gregory L. Simay, Sep 27 2017
a(2*n) = n times the string [10] in binary representation, a(2*n+1) = n times the string [10] followed with [1] in binary representation. Example: a(7) = 85 = (1010101) in binary, a(8) = 170 = (10101010) in binary. - Ctibor O. Zizka, Nov 06 2018
Except for 0, these are the positive integers whose binary expansion has cuts-resistance 1. For the operation of shortening all runs by 1, cuts-resistance is the number of applications required to reach an empty word. Cuts-resistance 2 is A329862. - Gus Wiseman, Nov 27 2019
From Markus Sigg, Sep 14 2020: (Start)
Let s(k) be the length of the Collatz orbit of k, e.g. s(1) = 1, s(2) = 2, s(3) = 5. Then s(a(n)) = n+3 for n >= 3. Proof by induction: s(a(3)) = s(5) = 6 = 3+3. For odd n >= 5 we have s(a(n)) = s(4*a(n-2)+1) = s(12*a(n-2)+4)+1 = s(3*a(n-2)+1)+3 = s(a(n-2))+2 = (n-2)+3+2 = n+3, and for even n >= 4 this gives s(a(n)) = s(2*a(n-1)) = s(a(n-1))+1 = (n-1)+3+1 = n+3.
Conjecture: For n >= 3, a(n) is the second largest natural number whose Collatz orbit has length n+3. (End)
From Gary W. Adamson, May 14 2021: (Start)
With offset 1 the sequence equals the numbers of 1's from n = 1 to 3, 3 to 7, 7 to 15, ...; of A035263; as shown below:
..1 3 7 15...
..1 0 1 1 1 0 1 0 1 0 1 1 1 0 1...
..1.....2...........5......................10...; a(n) = Sum_(k=1..2n-1)A035263(k)
.....1...........2.......................5...; as to zeros.
..1's in the Tower of Hanoi game represent CW moves On disks in the pattern:
..0, 1, 2, 0, 1, 2, ... whereas even numbered disks move in the pattern:
..0, 2, 1, 0, 2, 1, ... (End)
Except for 0, numbers that are repunits in Gray-code representation (A014550). - Amiram Eldar, May 21 2021
From Gus Wiseman, Apr 20 2023: (Start)
Also the number of nonempty subsets of {1..n} with integer median, where the median of a multiset is the middle part in the odd-length case, and the average of the two middle parts in the even-length case. For example, the a(1) = 1 through a(4) = 10 subsets are:
{1} {1} {1} {1}
{2} {2} {2}
{3} {3}
{1,3} {4}
{1,2,3} {1,3}
{2,4}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
The complement is counted by A005578.
For mean instead of median we have A051293, counting empty sets A327475.
For normal multisets we have A056450, strongly normal A361202.
For partitions we have A325347, strict A359907, complement A307683.
(End)

Examples

			a(4)=10 since 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111 are the 10 binary strings switching 0000 to 1111.
a(3) = 1 because "lrc" is the only way to tie a tie with 3 half turns, namely, pass the business end of the tie behind the standing part to the left, bring across the front to the right, then behind to the center. The final motion of tucking the loose end down the front behind the "lr" piece is not considered a "step".
a(4) = 2 because "lrlc" is the only way to tie a tie with 4 half turns. Note that since the number of moves is even, the first step is to go to the left in front of the tie, not behind it. This knot is the standard "four in hand", the most commonly known men's tie knot. By contrast, the second most well known tie knot, the Windsor, is represented by "lcrlcrlc".
a(n) = (2^0 - 1) XOR (2^1 - 1) XOR (2^2 - 1) XOR (2^3 - 1) XOR ... XOR (2^n - 1). - _Paul D. Hanna_, Nov 05 2011
G.f. = x + 2*x^2 + 5*x^3 + 10*x^4 + 21*x^5 + 42*x^6 + 85*x^7 + 170*x^8 + ...
a(9) = 341 = 2^8 + 2^6 + 2^4 + 2^2 + 2^0 = 4^4 + 4^3 + 4^2 + 4^1 + 4^0 = A002450(5). a(10) = 682 = 2*a(9) = 2*A002450(5). - _Gregory L. Simay_, Sep 27 2017
		

References

  • Thomas Fink and Yong Mao, The 85 Ways to Tie a Tie, Broadway Books, New York (1999), p. 138.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009.

Crossrefs

Partial sums of A001045.
Row sums of triangle A013580.
Equals A026644/2.
Union of the bijections A002450 and A020988. - Robert G. Wilson v, Jun 09 2014
Column k=3 of A261139.
Complement of A107907.
Row 3 of A300653.
Other sequences that relate to the binary representation of the terms: A003714, A003754, A007088, A022290, A056830, A104161, A107909.

Programs

  • GAP
    List([0..35],n->(2^(n+1)-2+(n mod 2))/3); # Muniru A Asiru, Nov 01 2018
    
  • Haskell
    a000975 n = a000975_list !! n
    a000975_list = 0 : 1 : map (+ 1)
       (zipWith (+) (tail a000975_list) (map (* 2) a000975_list))
    -- Reinhard Zumkeller, Mar 07 2012
    
  • Magma
    [(2^(n+1) - 2 + (n mod 2))/3: n in [0..40]]; // Vincenzo Librandi, Mar 18 2015
    
  • Maple
    A000975 := proc(n) option remember; if n <= 1 then n else if n mod 2 = 0 then 2*A000975(n-1) else 2*A000975(n-1)+1 fi; fi; end;
    seq(iquo(2^n,3),n=1..33); # Zerinvary Lajos, Apr 20 2008
    f:=n-> if n mod 2 = 0 then (2^n-1)/3 else (2^n-2)/3; fi; [seq(f(n),n=0..40)]; # N. J. A. Sloane, Mar 21 2017
  • Mathematica
    Array[Ceiling[2(2^# - 1)/3] &, 41, 0]
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == a[n - 1] + 2a[n - 2] + 1}, a, {n, 40}] (* or *)
    LinearRecurrence[{2, 1, -2}, {0, 1, 2}, 40] (* Harvey P. Dale, Aug 10 2013 *)
    f[n_] := Block[{exp = n - 2}, Sum[2^i, {i, exp, 0, -2}]]; Array[f, 33] (* Robert G. Wilson v, Oct 30 2015 *)
    f[s_List] := Block[{a = s[[-1]]}, Append[s, If[OddQ@ Length@ s, 2a + 1, 2a]]]; Nest[f, {0}, 32] (* Robert G. Wilson v, Jul 20 2017 *)
    NestList[2# + Boole[EvenQ[#]] &, 0, 39] (* Alonso del Arte, Sep 21 2018 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * 2^n \ 3)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    a(n)=if(n<=0,0,bitxor(a(n-1),2^n-1)) \\ Paul D. Hanna, Nov 05 2011
    
  • PARI
    concat(0, Vec(x/(1-2*x-x^2+2*x^3) + O(x^100))) \\ Altug Alkan, Oct 30 2015
    
  • PARI
    {a(n) = (4*2^n - 3 - (-1)^n) / 6}; /* Michael Somos, Jul 23 2017 */
    
  • Python
    def a(n): return (2**(n+1) - 2 + (n%2))//3
    print([a(n) for n in range(35)]) # Michael S. Branicky, Dec 19 2021

Formula

a(n) = ceiling(2*(2^n-1)/3).
Alternating sum transform (PSumSIGN) of {2^n - 1} (A000225).
a(n) = a(n-1) + 2*a(n-2) + 1.
a(n) = 2*2^n/3 - 1/2 - (-1)^n/6.
a(n) = Sum_{i = 0..n} A001045(i), partial sums of A001045. - Bill Blewett
a(n) = n + 2*Sum_{k = 1..n-2} a(k).
G.f.: x/((1+x)*(1-x)*(1-2*x)) = x/(1-2*x-x^2+2*x^3). - Paul Barry, Feb 11 2003
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3). - Paul Barry, Feb 11 2003
a(n) = Sum_{k = 0..floor((n-1)/2)} 2^(n-2*k-1). - Paul Barry, Nov 11 2003
a(n+1) = Sum_{k=0..floor(n/2)} 2^(n-2*k); a(n+1) = Sum_{k = 0..n} Sum_{j = 0..k} (-1)^(j+k)*2^j. - Paul Barry, Nov 12 2003
(-1)^(n+1)*a(n) = Sum_{i = 0..n} Sum_{k = 1..i} k!*k* Stirling2(i, k)*(-1)^(k-1) = (1/3)*(-2)^(n+1)-(1/6)(3*(-1)^(n+1)-1). - Mario Catalani (mario.catalani(AT)unito.it), Dec 22 2003
a(n+1) = (n!/3)*Sum_{i - (-1)^i + j = n, i = 0..n, j = 0..n} 1/(i - (-1)^i)!/j!. - Benoit Cloitre, May 24 2004
a(n) = A001045(n+1) - A059841(n). - Paul Barry, Jul 22 2004
a(n) = Sum_{k = 0..n} 2^(n-k-1)*(1-(-1)^k), row sums of A130125. - Paul Barry, Jul 28 2004
a(n) = Sum_{k = 0..n} binomial(k, n-k+1)2^(n-k); a(n) = Sum_{k = 0..floor(n/2)} binomial(n-k, k+1)2^k. - Paul Barry, Oct 07 2004
a(n) = A107909(A104161(n)); A007088(a(n)) = A056830(n). - Reinhard Zumkeller, May 28 2005
a(n) = floor(2^(n+1)/3) = ceiling(2^(n+1)/3) - 1 = A005578(n+1) - 1. - Paul Barry, Oct 08 2005
Convolution of "Number of fixed points in all 231-avoiding involutions in S_n." (A059570) with "1-n" (A024000), treating the result as if offset was 0. - Graeme McRae, Jul 12 2006
a(n) = A081254(n) - 2^n. - Philippe Deléham, Oct 15 2006
Starting (1, 2, 5, 10, 21, 42, ...), these are the row sums of triangle A135228. - Gary W. Adamson, Nov 23 2007
Let T = the 3 X 3 matrix [1,1,0; 1,0,1; 0,1,1]. Then T^n * [1,0,0] = [A005578(n), A001045(n), a(n-1)]. - Gary W. Adamson, Dec 25 2007
2^n = 2*A005578(n-1) + 2*A001045(n) + 2*a(n-2). - Gary W. Adamson, Dec 25 2007
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*stirling2(k,j)*x^(m-k) then a(n-3) = (-1)^(n-1)*f(n,3,-2), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) + A001045(n) = A166920(n). a(n) + A001045(n+2) = A051049(n+1). - Paul Curtz, Oct 29 2009
a(n) = floor(A051049(n+1)/3). - Gary Detlefs, Dec 19 2010
a(n) = round((2^(n+2)-3)/6) = floor((2^(n+1)-1)/3) = round((2^(n+1)-2)/3); a(n) = a(n-2) + 2^(n-1), n > 1. - Mircea Merca, Dec 27 2010
a(n) = binary XOR of 2^k-1 for k=0..n. - Paul D. Hanna, Nov 05 2011
E.g.f.: 2/3*exp(2*x) - 1/2*exp(x) - 1/6*exp(-x) = 2/3*U(0); U(k) = 1 - 3/(4*(2^k) - 4*(2^k)/(1+3*(-1)^k - 24*x*(2^k)/(8*x*(2^k)*(-1)^k - (k+1)/U(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
Starting with "1" = triangle A059260 * [1, 2, 2, 2, ...] as a vector. - Gary W. Adamson, Mar 06 2012
a(n) = 2*(2^n - 1)/3, for even n; a(n) = (2^(n+1) - 1)/3 = (1/3)*(2^((n+1)/2) - 1)*(2^((n+1)/2) + 1), for odd n. - Hieronymus Fischer, Nov 22 2012
a(n) + a(n+1) = 2^(n+1) - 1. - Arie Bos, Apr 03 2013
G.f.: Q(0)/(3*(1-x)), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
floor(a(n+2)*3/5) = A077854(n), for n >= 0. - Armands Strazds, Sep 21 2014
a(n) = (2^(n+1) - 2 + (n mod 2))/3. - Paul Toms, Mar 18 2015
a(0) = 0, a(n) = 2*(a(n-1)) + (n mod 2). - Paul Toms, Mar 18 2015
Binary: a(n) = (a(n-1) shift left 1) + (a(n-1)) NOR (...11110). - Paul Toms, Mar 18 2015
Binary: for n > 1, a(n) = 2*a(n-1) OR a(n-2). - Stanislav Sykora, Nov 12 2015
a(n) = A266613(n) - 20*2^(n-5), for n > 2. - Andres Cicuttin, Mar 31 2016
From Michael Somos, Jul 23 2017: (Start)
a(n) = -(2^n)*a(-n) for even n; a(n) = -(2^(n+1))*a(-n) + 1 for odd n.
0 = +a(n)*(+2 +4*a(n) -4*a(n+1)) + a(n+1)*(-1 +a(n+1)) for all n in Z. (End)
G.f.: (x^1+x^3+x^5+x^7+...)/(1-2*x). - Gregory L. Simay, Sep 27 2017
a(n+1) = A051049(n) + A001045(n). - Yuchun Ji, Jul 12 2018
a(n) = A153772(n+3)/4. - Markus Sigg, Sep 14 2020
a(4*k+d) = 2^(d+1)*a(4*k-1) + a(d), a(n+4) = a(n) + 2^n*10, a(0..3) = [0,1,2,5]. So the last digit is always 0,1,2,5 repeated. - Yuchun Ji, May 22 2023

Extensions

Additional comments from Barry E. Williams, Jan 10 2000

A027383 a(2*n) = 3*2^n - 2; a(2*n+1) = 2^(n+2) - 2.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 22, 30, 46, 62, 94, 126, 190, 254, 382, 510, 766, 1022, 1534, 2046, 3070, 4094, 6142, 8190, 12286, 16382, 24574, 32766, 49150, 65534, 98302, 131070, 196606, 262142, 393214, 524286, 786430, 1048574, 1572862, 2097150, 3145726, 4194302, 6291454
Offset: 0

Views

Author

Keywords

Comments

Number of balanced strings of length n: let d(S) = #(1's) - #(0's), # == count in S, then S is balanced if every substring T of S has -2 <= d(T) <= 2.
Number of "fold lines" seen when a rectangular piece of paper is folded n+1 times along alternate orthogonal directions and then unfolded. - Quim Castellsaguer (qcastell(AT)pie.xtec.es), Dec 30 1999
Also the number of binary strings with the property that, when scanning from left to right, once the first 1 is seen in position j, there must be a 1 in positions j+2, j+4, ... until the end of the string. (Positions j+1, j+3, ... can be occupied by 0 or 1.) - Jeffrey Shallit, Sep 02 2002
a(n-1) is also the Moore lower bound on the order of a (3,n)-cage. - Eric W. Weisstein, May 20 2003 and Jason Kimberley, Oct 30 2011
Partial sums of A016116. - Hieronymus Fischer, Sep 15 2007
Equals row sums of triangle A152201. - Gary W. Adamson, Nov 29 2008
From John P. McSorley, Sep 28 2010: (Start)
a(n) = DPE(n+1) is the total number of k-double-palindromes of n up to cyclic equivalence. See sequence A180918 for the definitions of a k-double-palindrome of n and of cyclic equivalence. Sequence A180918 is the 'DPE(n,k)' triangle read by rows where DPE(n,k) is the number of k-double-palindromes of n up to cyclic equivalence. For example, we have a(4) = DPE(5) = DPE(5,1) + DPE(5,2) + DPE(5,3) + DPE(5,4) + DPE(5,5) = 0 + 2 + 2 + 1 + 1 = 6.
The 6 double-palindromes of 5 up to cyclic equivalence are 14, 23, 113, 122, 1112, 11111. They come from cyclic equivalence classes {14,41}, {23,32}, {113,311,131}, {122,212,221}, {1112,2111,1211,1121}, and {11111}. Hence a(n)=DPE(n+1) is the total number of cyclic equivalence classes of n containing at least one double-palindrome.
(End)
From Herbert Eberle, Oct 02 2015: (Start)
For n > 0, there is a red-black tree of height n with a(n-1) internal nodes and none with less.
In order a red-black tree of given height has minimal number of nodes, it has exactly 1 path with strictly alternating red and black nodes. All nodes outside this height defining path are black.
Consider:
mrbt5 R
/ \
/ \
/ \
/ B
/ / \
mrbt4 B / B
/ \ B E E
/ B E E
mrbt3 R E E
/ \
/ B
mrbt2 B E E
/ E
mrbt1 R
E E
(Red nodes shown as R, blacks as B, externals as E.)
Red-black trees mrbt1, mrbt2, mrbt3, mrbt4, mrbt5 of respective heights h = 1, 2, 3, 4, 5; all minimal in the number of internal nodes, namely 1, 2, 4, 6, 10.
Recursion (let n = h-1): a(-1) = 0, a(n) = a(n-1) + 2^floor(n/2), n >= 0.
(End)
Also the number of strings of length n with the digits 1 and 2 with the property that the sum of the digits of all substrings of uneven length is not divisible by 3. An example with length 8 is 21221121. - Herbert Kociemba, Apr 29 2017
a(n-2) is the number of achiral n-bead necklaces or bracelets using exactly two colors. For n=4, the four arrangements are AAAB, AABB, ABAB, and ABBB. - Robert A. Russell, Sep 26 2018
Partial sums of powers of 2 repeated 2 times, like A200672 where is 3 times. - Yuchun Ji, Nov 16 2018
Also the number of binary words of length n with cuts-resistance <= 2, where, for the operation of shortening all runs by one, cuts-resistance is the number of applications required to reach an empty word. Explicitly, these are words whose sequence of run-lengths, all of which are 1 or 2, has no odd-length run of 1's sandwiched between two 2's. - Gus Wiseman, Nov 28 2019
Also the number of up-down paths with n steps such that the height difference between the highest and lowest points is at most 2. - Jeremy Dover, Jun 17 2020
Also the number of non-singleton integer compositions of n + 2 with no odd part other than the first or last. Including singletons gives A052955. This is an unsorted (or ordered) version of A351003. The version without even (instead of odd) interior parts is A001911, complement A232580. Note that A000045(n-1) counts compositions without odd parts, with non-singleton case A077896, and A052952/A074331 count non-singleton compositions without even parts. Also the number of compositions y of n + 1 such that y_i = y_{i+1} for all even i. - Gus Wiseman, Feb 19 2022

Examples

			After 3 folds one sees 4 fold lines.
Example: a(3) = 6 because the strings 001, 010, 100, 011, 101, 110 have the property.
Binary: 1, 10, 100, 110, 1010, 1110, 10110, 11110, 101110, 111110, 1011110, 1111110, 10111110, 11111110, 101111110, 111111110, 1011111110, 1111111110, 10111111110, ... - _Jason Kimberley_, Nov 02 2011
Example: Partial sums of powers of 2 repeated 2 times:
a(3) = 1+1+2 = 4;
a(4) = 1+1+2+2 = 6;
a(5) = 1+1+2+2+4 = 10.
_Yuchun Ji_, Nov 16 2018
		

References

  • John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010. [John P. McSorley, Sep 28 2010]

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), this sequence (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A000066 (actual order of a (3,g)-cage).
Bisections are A033484 (even) and A000918 (odd).
a(n) = A305540(n+2,2), the second column of the triangle.
Numbers whose binary expansion is a balanced word are A330029.
Binary words counted by cuts-resistance are A319421 or A329860.
The complementary compositions are counted by A274230(n-1) + 1, with bisections A060867 (even) and A134057 (odd).
Cf. A000346, A000984, A001405, A001700, A011782 (compositions).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Haskell
    import Data.List (transpose)
    a027383 n = a027383_list !! n
    a027383_list = concat $ transpose [a033484_list, drop 2 a000918_list]
    -- Reinhard Zumkeller, Jun 17 2015
    
  • Magma
    [2^Floor((n+2)/2)+2^Floor((n+1)/2)-2: n in [0..50]]; // Vincenzo Librandi, Aug 16 2011
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=2*a[n-2]+2 od: seq(a[n], n=1..41); # Zerinvary Lajos, Mar 16 2008
  • Mathematica
    a[n_?EvenQ] := 3*2^(n/2)-2; a[n_?OddQ] := 2^(2+(n-1)/2)-2; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 21 2011, after Quim Castellsaguer *)
    LinearRecurrence[{1, 2, -2}, {1, 2, 4}, 41] (* Robert G. Wilson v, Oct 06 2014 *)
    Table[Length[Select[Tuples[{0,1},n],And[Max@@Length/@Split[#]<=2,!MatchQ[Length/@Split[#],{_,2,ins:1..,2,_}/;OddQ[Plus[ins]]]]&]],{n,0,15}] (* Gus Wiseman, Nov 28 2019 *)
  • PARI
    a(n)=2^(n\2+1)+2^((n+1)\2)-2 \\ Charles R Greathouse IV, Oct 21 2011
    
  • Python
    def a(n): return 2**((n+2)//2) + 2**((n+1)//2) - 2
    print([a(n) for n in range(43)]) # Michael S. Branicky, Feb 19 2022

Formula

a(0)=1, a(1)=2; thereafter a(n+2) = 2*a(n) + 2.
a(2n) = 3*2^n - 2 = A033484(n);
a(2n-1) = 2^(n+1) - 2 = A000918(n+1).
G.f.: (1 + x)/((1 - x)*(1 - 2*x^2)). - David Callan, Jul 22 2008
a(n) = Sum_{k=0..n} 2^min(k, n-k).
a(n) = 2^floor((n+2)/2) + 2^floor((n+1)/2) - 2. - Quim Castellsaguer (qcastell(AT)pie.xtec.es)
a(n) = 2^(n/2)*(3 + 2*sqrt(2) + (3-2*sqrt(2))*(-1)^n)/2 - 2. - Paul Barry, Apr 23 2004
a(n) = A132340(A052955(n)). - Reinhard Zumkeller, Aug 20 2007
a(n) = A052955(n+1) - 1. - Hieronymus Fischer, Sep 15 2007
a(n) = A132666(a(n+1)) - 1. - Hieronymus Fischer, Sep 15 2007
a(n) = A132666(a(n-1)+1) for n > 0. - Hieronymus Fischer, Sep 15 2007
A132666(a(n)) = a(n-1) + 1 for n > 0. - Hieronymus Fischer, Sep 15 2007
G.f.: (1 + x)/((1 - x)*(1 - 2*x^2)). - David Callan, Jul 22 2008
a(n) = 2*( (a(n-2)+1) mod (a(n-1)+1) ), n > 1. - Pierre Charland, Dec 12 2010
a(n) = A136252(n-1) + 1, for n > 0. - Jason Kimberley, Nov 01 2011
G.f.: (1+x*R(0))/(1-x), where R(k) = 1 + 2*x/( 1 - x/(x + 1/R(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013
a(n) = 2^((2*n + 3*(1-(-1)^n))/4)*3^((1+(-1)^n)/2) - 2. - Luce ETIENNE, Sep 01 2014
a(n) = a(n-1) + 2^floor((n-1)/2) for n>0, a(0)=1. - Yuchun Ji, Nov 23 2018
E.g.f.: 3*cosh(sqrt(2)*x) - 2*cosh(x) + 2*sqrt(2)*sinh(sqrt(2)*x) - 2*sinh(x). - Stefano Spezia, Apr 06 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 24 2000
Replaced definition with a simpler one. - N. J. A. Sloane, Jul 09 2022

A319416 Cuts-resistance of n: number of applications of Lernormand's "raboter" map needed to transform the binary expansion of n to the empty string.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 3, 3, 3, 4, 5, 5, 4, 3, 3, 3, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 2, 3, 4, 3, 3, 3, 4, 4, 4, 5, 6, 6, 5, 4, 4, 4, 3, 3, 3, 4, 3, 2, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2018

Keywords

Comments

Here we are using Lenormand's "raboter" map in a stricter sense than in A318921 and A319419. If S is a binary string with successive runs of lengths b,c,d,e,..., the "raboter" map sends S to the binary string with successive runs of lengths b-1,c-1,d-1,e-1,... Runs of length 0 are omitted (they are indicated by dots in the examples below).
To get a(n), start with S equal to the binary expansion of n beginning with the most significant bit, and keep applying the map until we reach the empty string.
After the first step, the string may start with a string of 0's: this is acceptable because we are working with strings, not binary expansions of numbers.
For example, 34 = 100010 -> .00.. = 00 -> 0. = 0 -> . (the empty string), taking 3 steps, so a(34) = 3.
Note: this is not the same as the number of applications of the map k -> A318921(k) needed to reduce the binary expansion of n to zero (because A318921 does not distinguish between 0 and the empty string).
This is also not the same as the number of applications of the map k -> A319419(k) needed to reduce the binary expansion of n to -1 (because A319419 does not distinguish between a string of 0's and a single 0).
The value k appears for the first time when n = 2^k - 1.

Examples

			n: repeatedly applying the map / number of steps = a(n)
0: 0 -> . / 1
1: 1 -> . / 1
2: 10 -> . / 1
3: 11 -> 1 -> . / 2
4: 100 -> 0 -> . / 2
5: 101 -> . / 1
6: 110 -> 1 -> . / 2
7: 111 -> 11 -> 1 -> . / 3
8: 1000 -> 00 -> 0 -> . / 3
9: 1001 -> 0 -> . / 2
10: 1010 -> . / 1
11: 1011 -> 1 -> . / 2
12: 1100 -> 10 -> . / 2
...
		

Crossrefs

Positions of 1's are A000975.
Positions of 2's are A329862.
The version for runs-resistance is A318928.
The version for compositions is A329861.
Binary words counted by cuts-resistance are A319421 or A329860.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[degdep[IntegerDigits[n,2]],{n,0,50}] (* Gus Wiseman, Nov 25 2019 *)
  • PARI
    a(n) = my (b=binary(n), w=#b); for (k=1, oo, my (ww=0); for (i=2, w, if (b[i-1]==b[i], b[ww++]=b[i])); if (ww==0, return (k), w=ww)) \\ Rémy Sigrist, Sep 23 2018

Extensions

More terms from Rémy Sigrist, Sep 23 2018

A107907 Numbers having consecutive zeros or consecutive ones in binary representation.

Original entry on oeis.org

3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, May 28 2005

Keywords

Comments

Also positive integers whose binary expansion has cuts-resistance > 1. For the operation of shortening all runs by 1, cuts-resistance is the number of applications required to reach an empty word. - Gus Wiseman, Nov 27 2019

Examples

			From _Gus Wiseman_, Nov 27 2019: (Start)
The sequence of terms together with their binary expansions begins:
    3:      11
    4:     100
    6:     110
    7:     111
    8:    1000
    9:    1001
   11:    1011
   12:    1100
   13:    1101
   14:    1110
   15:    1111
   16:   10000
   17:   10001
   18:   10010
(End)
		

Crossrefs

Union of A003754 and A003714.
Complement of A000975.

Programs

  • Mathematica
    Select[Range[100],MatchQ[IntegerDigits[#,2],{_,x_,x_,_}]&] (* Gus Wiseman, Nov 27 2019 *)
    Select[Range[80],SequenceCount[IntegerDigits[#,2],{x_,x_}]>0&] (* or *) Complement[Range[85],Table[FromDigits[PadRight[{},n,{1,0}],2],{n,7}]] (* Harvey P. Dale, Jul 31 2021 *)
  • Python
    def A107907(n): return (m:=n-2+(k:=(3*n+3).bit_length()))+(m>=(1<Chai Wah Wu, Apr 21 2025

Formula

a(A000247(n)) = A000225(n+2).
a(A000295(n+2)) = A000079(n+2).
a(A000325(n+2)) = A000051(n+2) for n>0.
a(n) = m+1 if m >= floor(2^k/3) otherwise a(n) = m where k = floor(log_2(3*(n+1))) and m = n-2+k. - Chai Wah Wu, Apr 21 2025

Extensions

Offset changed to 1 by Chai Wah Wu, Apr 21 2025

A329861 Triangle read by rows where T(n,k) is the number of compositions of n with cuts-resistance k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 3, 0, 1, 0, 7, 6, 2, 0, 1, 0, 14, 9, 6, 2, 0, 1, 0, 23, 22, 10, 6, 2, 0, 1, 0, 39, 47, 22, 10, 7, 2, 0, 1, 0, 71, 88, 52, 24, 10, 8, 2, 0, 1, 0, 124, 179, 101, 59, 26, 11, 9, 2, 0, 1, 0, 214, 354, 220, 112, 71, 28, 12, 10, 2, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Nov 23 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
For the operation of shortening all runs by 1, cuts-resistance is defined as the number of applications required to reach an empty word.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  3  0  1
  0  4  3  0  1
  0  7  6  2  0  1
  0 14  9  6  2  0  1
  0 23 22 10  6  2  0  1
  0 39 47 22 10  7  2  0  1
  0 71 88 52 24 10  8  2  0  1
Row n = 6 counts the following compositions (empty columns not shown):
  (6)     (33)    (222)    (11112)  (111111)
  (15)    (114)   (1113)   (21111)
  (24)    (411)   (3111)
  (42)    (1122)  (11121)
  (51)    (1131)  (11211)
  (123)   (1221)  (12111)
  (132)   (1311)
  (141)   (2112)
  (213)   (2211)
  (231)
  (312)
  (321)
  (1212)
  (2121)
		

Crossrefs

Row sums are A000079.
Column k = 1 is A003242 (for n > 0).
Column k = 2 is A329863.
Row sums without the k = 1 column are A261983.
The version for runs-resistance is A329744.
The version for binary vectors is A329860.
The cuts-resistance of the binary expansion of n is A319416.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],degdep[#]==k&]],{n,0,10},{k,0,n}]

A319420 Irregular triangle read by rows: row n lists the cuts-resistances of the 2^n binary vectors of length n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 3, 2, 1, 2, 2, 1, 2, 3, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 5, 4, 3, 3, 3, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 3, 4, 5
Offset: 0

Views

Author

N. J. A. Sloane, Sep 22 2018

Keywords

Comments

The cuts-resistance of a vector is defined in A319416. The 2^n vectors of length n are taken in lexicographic order.
Note that here the vectors can begin with either 0 or 1, whereas in A319416 only vectors beginning with 1 are considered (since there we are considering binary representations of numbers).
Conjecture: The row sums, halved, appear to match A189391.

Examples

			Triangle begins:
0,
1,1,
2,1,1,2,
3,2,1,2,2,1,2,3,
4,3,2,2,2,1,2,3,3,2,1,2,2,2,3,4,
5,4,3,3,3,2,2,3,3,2,1,2,2,2,3,4,4,3,2,2,2,1,2,3,3,2,2,2,3,3,3,4,5,
...
		

Crossrefs

Keeping the first digit gives A319416.
Positions of 1's are the terms > 1 of A061547 and A086893, all minus 1.
The version for runs-resistance is A329870.
Compositions counted by cuts-resistance are A329861.
Binary words counted by cuts-resistance are A319421 or A329860.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[degdep[Rest[IntegerDigits[n,2]]],{n,0,50}] (* Gus Wiseman, Nov 25 2019 *)

A329863 Number of compositions of n with cuts-resistance 2.

Original entry on oeis.org

0, 0, 1, 0, 3, 6, 9, 22, 47, 88, 179, 354, 691, 1344, 2617, 5042, 9709, 18632, 35639, 68010, 129556, 246202, 467188, 885036, 1674211, 3163094, 5969022, 11251676, 21189382, 39867970, 74950464, 140798302, 264313039, 495861874, 929709687, 1742193854, 3263069271, 6108762316
Offset: 0

Views

Author

Gus Wiseman, Nov 23 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word.

Examples

			The a(2) = 1 through a(7) = 22 compositions (empty column not shown):
  (1,1)  (2,2)    (1,1,3)    (3,3)      (1,1,5)
         (1,1,2)  (1,2,2)    (1,1,4)    (1,3,3)
         (2,1,1)  (2,2,1)    (4,1,1)    (2,2,3)
                  (3,1,1)    (1,1,2,2)  (3,2,2)
                  (1,1,2,1)  (1,1,3,1)  (3,3,1)
                  (1,2,1,1)  (1,2,2,1)  (5,1,1)
                             (1,3,1,1)  (1,1,2,3)
                             (2,1,1,2)  (1,1,3,2)
                             (2,2,1,1)  (1,1,4,1)
                                        (1,4,1,1)
                                        (2,1,1,3)
                                        (2,1,2,2)
                                        (2,2,1,2)
                                        (2,3,1,1)
                                        (3,1,1,2)
                                        (3,2,1,1)
                                        (1,1,2,1,2)
                                        (1,1,2,2,1)
                                        (1,2,1,1,2)
                                        (1,2,2,1,1)
                                        (2,1,1,2,1)
                                        (2,1,2,1,1)
		

Crossrefs

Column k = 2 of A329861.
Compositions with cuts-resistance 1 are A003242.
Compositions with runs-resistance 2 are A329745.
Numbers whose binary expansion has cuts-resistance 2 are A329862.
Binary words with cuts-resistance 2 are conjectured to be A027383.
Cuts-resistance of binary expansion is A319416.
Binary words counted by cuts-resistance are A319421 and A329860.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],degdep[#]==2&]],{n,0,10}]
  • PARI
    Ca(N) = {1/(1-sum(k=1, N, x^k/(1+x^k)))}
    A_x(N) = {my(x='x+O('x^N)); concat([0,0],Vec(-1+(1+sum(m=1,N, Ca(N)*x^(2*m)*(Ca(N)-1)/(1+x^m*(2+x^m*(1+Ca(N))))))/(1-sum(m=1,N, Ca(N)*x^(2*m)/(1+x^m*(2+x^m*(1+Ca(N))))))))}
    A_x(38) \\ John Tyler Rascoe, Feb 20 2025

Formula

G.f.: -1 + (1 + Ca(x) * Sum_{m>0} x^(2*m) * (Ca(x)-1)/(1 + x^m * (2 + x^m * (1+Ca(x)))))/(1 - Ca(x) * Sum_{m>0} x^(2*m)/(1 + x^m * (2 + x^m * (1+Ca(x))))) where Ca(x) is the g.f. for A003242. - John Tyler Rascoe, Feb 20 2025

Extensions

a(21) onwards from John Tyler Rascoe, Feb 20 2025

A330028 Number of compositions of n with cuts-resistance <= 2.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 23, 45, 86, 159, 303, 568, 1069, 2005, 3769, 7066, 13251, 24821, 46482, 86988, 162758
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word.

Examples

			The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)    (3)    (4)      (5)
           (1,1)  (1,2)  (1,3)    (1,4)
                  (2,1)  (2,2)    (2,3)
                         (3,1)    (3,2)
                         (1,1,2)  (4,1)
                         (1,2,1)  (1,1,3)
                         (2,1,1)  (1,2,2)
                                  (1,3,1)
                                  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,2,1)
                                  (1,2,1,1)
		

Crossrefs

Sum of first three columns of A329861.
Compositions with cuts-resistance 1 are A003242.
Compositions with cuts-resistance 2 are A329863.
Compositions with runs-resistance 2 are A329745.
Numbers whose binary expansion has cuts-resistance 2 are A329862.
Binary words with cuts-resistance 2 are A027383.
Cuts-resistance of binary expansion is A319416.
Binary words counted by cuts-resistance are A319421 or A329860.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],degdep[#]<=2&]],{n,0,10}]

A330029 Numbers whose binary expansion has cuts-resistance <= 2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 18, 19, 20, 21, 22, 25, 26, 37, 38, 41, 42, 43, 44, 45, 50, 51, 52, 53, 74, 75, 76, 77, 82, 83, 84, 85, 86, 89, 90, 101, 102, 105, 106, 149, 150, 153, 154, 165, 166, 169, 170, 171, 172, 173, 178, 179, 180, 181, 202, 203
Offset: 1

Views

Author

Gus Wiseman, Nov 27 2019

Keywords

Comments

For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word.
Also numbers whose binary expansion is a balanced word (see A027383 for definition).
Also numbers whose binary expansion has all run-lengths 1 or 2 and whose sequence of run-lengths has no odd-length run of 1's sandwiched between two 2's.

Examples

			The sequence of terms together with their binary expansions begins:
    0:
    1:        1
    2:       10
    3:       11
    4:      100
    5:      101
    6:      110
    9:     1001
   10:     1010
   11:     1011
   12:     1100
   13:     1101
   18:    10010
   19:    10011
   20:    10100
   21:    10101
   22:    10110
   25:    11001
   26:    11010
   37:   100101
   38:   100110
		

Crossrefs

Union of A000975 and A329862.
Balanced binary words are counted by A027383.
Compositions with cuts-resistance <= 2 are A330028.
Cuts-resistance of binary expansion is A319416.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Select[Range[0,100],degdep[IntegerDigits[#,2]]<=2&]
Showing 1-9 of 9 results.