A329919 a(n) is the total number of squares after n iterations of the "Square Multiscale" substitution.
1, 17, 33, 49, 65, 321, 337, 849, 865, 1633, 1649, 2673, 6769, 6785, 8065, 20353, 20369, 21905, 46481, 46497, 48289, 89249, 154785, 154801, 156849, 218289, 480433, 480449, 482753, 568769, 1224129, 1224145, 1226705, 1341393, 2652113, 3700689, 3700705, 3703521
Offset: 0
Keywords
Examples
The basic subdivision rule: ---------------- ---------------- | | | | | | | | | | ---------------- | | | | | | | | ---- ---- | | ------> | | | | | | ---- ---- | | | | | | | | ---------------- | | | | | | | | ---------------- ---------------- n = 1: The initial substitution subdivides the single square into 1 large and 16 small squares (as shown in the diagram above), so a(1) = 17. n = 2, 3, 4: The largest square present after the previous iterations is the center square, so 16 new squares are added in each of those iterations. Thus, a(2) = a(1) + 16 = 33, a(3) = a(2) + 16 = 49, a(4) = a(3) + 16 = 65. n = 5: This iteration subdivides the 16 outer squares (shown in the diagram above). 16^2 = 256, so a(5) = a(4) + 256 = 321.
Links
- Rémy Sigrist, PARI program for A329919
- Yotam Smilansky and Yaar Solomon, Multiscale Substitution Tilings, arXiv:2003.11735 [math.DS], 2020.
- Tilings Encyclopedia, Square Multiscale
Programs
-
PARI
See Links section.
Extensions
More terms from Rémy Sigrist, Nov 24 2019
Comments