A330018 a(n) = Sum_{d|n} (bigomega(d) - omega(d)).
0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 2, 0, 0, 0, 6, 0, 2, 0, 2, 0, 0, 0, 6, 1, 0, 3, 2, 0, 0, 0, 10, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 2, 2, 0, 0, 12, 1, 2, 0, 2, 0, 6, 0, 6, 0, 0, 0, 4, 0, 0, 2, 15, 0, 0, 0, 2, 0, 0, 0, 13, 0, 0, 2, 2, 0, 0, 0, 12, 6, 0, 0, 4, 0, 0, 0, 6, 0, 4
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 100: # for a(1)..a(N) V:= Vector(N): for d from 1 to N do v:= add(t[2]-1, t=ifactors(d)[2]); L:= [seq(i,i=d..N,d)]: V[L]:= map(`+`,V[L],v); od: convert(V,list); # Robert Israel, Jun 12 2020
-
Mathematica
a[n_] := Sum[PrimeOmega[d] - PrimeNu[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 90}]
-
PARI
a(n) = sumdiv(n, d, bigomega(d) - omega(d)); \\ Michel Marcus, Jun 12 2020
Formula
G.f.: Sum_{k>=1} A046660(k) * x^k / (1 - x^k).
If m and n are coprime, a(m*n) = tau(m)*a(n) + tau(n)*a(m), where tau = A000005. - Robert Israel, Jun 12 2020
Comments