cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330018 a(n) = Sum_{d|n} (bigomega(d) - omega(d)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 2, 0, 0, 0, 6, 0, 2, 0, 2, 0, 0, 0, 6, 1, 0, 3, 2, 0, 0, 0, 10, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 2, 2, 0, 0, 12, 1, 2, 0, 2, 0, 6, 0, 6, 0, 0, 0, 4, 0, 0, 2, 15, 0, 0, 0, 2, 0, 0, 0, 13, 0, 0, 2, 2, 0, 0, 0, 12, 6, 0, 0, 4, 0, 0, 0, 6, 0, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 27 2019

Keywords

Comments

Inverse Moebius transform of A046660.

Crossrefs

Cf. A001221, A001222, A005117 (positions of 0's), A046660, A062799, A069264, A268340.

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for d from 1 to N do
      v:= add(t[2]-1, t=ifactors(d)[2]);
      L:= [seq(i,i=d..N,d)]:
      V[L]:= map(`+`,V[L],v);
    od:
    convert(V,list); # Robert Israel, Jun 12 2020
  • Mathematica
    a[n_] := Sum[PrimeOmega[d] - PrimeNu[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 90}]
  • PARI
    a(n) = sumdiv(n, d, bigomega(d) - omega(d)); \\ Michel Marcus, Jun 12 2020

Formula

G.f.: Sum_{k>=1} A046660(k) * x^k / (1 - x^k).
a(n) = A069264(n) - A062799(n).
If m and n are coprime, a(m*n) = tau(m)*a(n) + tau(n)*a(m), where tau = A000005. - Robert Israel, Jun 12 2020