cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330052 Number of non-isomorphic set-systems of weight n with at least one endpoint.

Original entry on oeis.org

0, 1, 2, 4, 8, 18, 40, 94, 228, 579, 1508, 4092, 11478, 33337, 100016, 309916, 990008, 3257196, 11021851, 38314009, 136657181, 499570867, 1869792499, 7158070137, 28003286261, 111857491266, 455852284867, 1893959499405, 8017007560487, 34552315237016, 151534813272661
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions:
  {1}  {12}    {123}      {1234}        {12345}
       {1}{2}  {1}{12}    {1}{123}      {1}{1234}
               {1}{23}    {12}{13}      {12}{123}
               {1}{2}{3}  {1}{234}      {12}{134}
                          {12}{34}      {1}{2345}
                          {1}{2}{13}    {12}{345}
                          {1}{2}{34}    {1}{12}{13}
                          {1}{2}{3}{4}  {1}{12}{23}
                                        {1}{12}{34}
                                        {1}{2}{123}
                                        {1}{2}{134}
                                        {1}{2}{345}
                                        {1}{23}{45}
                                        {2}{13}{14}
                                        {1}{2}{3}{12}
                                        {1}{2}{3}{14}
                                        {1}{2}{3}{45}
                                        {1}{2}{3}{4}{5}
		

Crossrefs

The complement is counted by A330054.
The multiset partition version is A330058.
Non-isomorphic set-systems with at least one singleton are A330053.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    brute[{}]:={};brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Table[Length[Select[Union[brute/@Join@@mps/@strnorm[n]],UnsameQ@@#&&And@@UnsameQ@@@#&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]

Formula

a(n) = A283877(n) - A330054(n). - Andrew Howroyd, Jan 27 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 27 2024