A330054 Number of non-isomorphic set-systems of weight n with no endpoints.
1, 0, 0, 0, 1, 0, 4, 4, 16, 26, 87, 181, 570, 1453, 4464, 13038, 41548, 132217, 442603, 1506803, 5305174, 19092816, 70548770, 266495254, 1029835424, 4063610148, 16366919221, 67217627966, 281326631801, 1199048810660, 5201341196693, 22950740113039, 102957953031700
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(0) = 1 through a(8) = 16 multiset partitions (empty columns not shown): 0 {1}{2}{12} {12}{13}{23} {13}{23}{123} {12}{134}{234} {1}{23}{123} {1}{3}{23}{123} {1}{234}{1234} {1}{2}{13}{23} {3}{12}{13}{23} {12}{34}{1234} {1}{2}{3}{123} {1}{2}{3}{13}{23} {1}{12}{34}{234} {12}{13}{24}{34} {1}{2}{134}{234} {1}{2}{34}{1234} {2}{13}{14}{234} {2}{13}{23}{123} {3}{13}{23}{123} {1}{2}{13}{24}{34} {1}{2}{3}{14}{234} {1}{2}{3}{23}{123} {1}{2}{3}{4}{1234} {2}{3}{12}{13}{23} {1}{2}{3}{4}{12}{34}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Wikipedia, Degree (graph theory)
Crossrefs
Programs
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={my(g=1+x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g - subst(g,x,x^2)} a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(K(q,t,n\t)/t,x,x^t) )), n)); s/n!)} \\ Andrew Howroyd, Jan 27 2024
Extensions
a(11) onwards from Andrew Howroyd, Jan 27 2024
Comments