A330055 Number of non-isomorphic set-systems of weight n with no singletons or endpoints.
1, 0, 0, 0, 0, 0, 1, 1, 3, 5, 16, 24, 90, 179, 567, 1475, 4623, 13650, 44475, 144110, 492017, 1706956, 6124330, 22442687, 84406276, 324298231, 1273955153, 5106977701, 20885538133, 87046940269, 369534837538, 1596793560371, 7019424870960, 31374394197536, 142514998263015
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(7) = 1 through a(10) = 16 set-systems: {12}{13}{123} {12}{134}{234} {12}{134}{1234} {12}{1345}{2345} {12}{34}{1234} {123}{124}{134} {123}{124}{1234} {12}{13}{24}{34} {12}{13}{14}{234} {123}{145}{2345} {12}{13}{23}{123} {12}{345}{12345} {12}{13}{24}{134} {12}{13}{124}{134} {12}{13}{124}{234} {12}{13}{14}{1234} {12}{13}{24}{1234} {12}{13}{245}{345} {12}{13}{45}{2345} {12}{34}{123}{124} {12}{34}{125}{345} {12}{34}{135}{245} {13}{24}{123}{124} {12}{13}{14}{23}{24} {12}{13}{24}{35}{45}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Wikipedia, Degree (graph theory)
Crossrefs
Programs
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={my(g=x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g-subst(g,x,x^2)} S(q, t, k)={(x-x^2)*sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k)} a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(K(q, t, n\t)-S(q,t,n\t),x,x^t)/t )), n)); s/n!)} \\ Andrew Howroyd, Jan 27 2024
Extensions
a(11) onwards from Andrew Howroyd, Jan 27 2024
Comments