cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330058 Number of non-isomorphic multiset partitions of weight n with at least one endpoint.

Original entry on oeis.org

0, 1, 2, 7, 21, 68, 214, 706, 2335, 7968, 27661, 98366, 357212, 1326169, 5027377, 19459252, 76850284, 309531069, 1270740646, 5314727630, 22633477157, 98096319485, 432490992805, 1938762984374, 8832924638252, 40882143931620, 192148753444380, 916747097916418
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
An endpoint is a vertex appearing only once (degree 1).
Also the number of non-isomorphic multiset partitions of weight n with at least one singleton.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions:
  {1}  {12}    {122}      {1222}
       {1}{2}  {123}      {1233}
               {1}{22}    {1234}
               {1}{23}    {1}{222}
               {2}{12}    {12}{22}
               {1}{2}{2}  {1}{233}
               {1}{2}{3}  {12}{33}
                          {1}{234}
                          {12}{34}
                          {13}{23}
                          {2}{122}
                          {3}{123}
                          {1}{1}{23}
                          {1}{2}{22}
                          {1}{2}{33}
                          {1}{2}{34}
                          {1}{3}{23}
                          {2}{2}{12}
                          {1}{2}{2}{2}
                          {1}{2}{3}{3}
                          {1}{2}{3}{4}
		

Crossrefs

The case of set-systems is A330053 (singletons) or A330052 (endpoints).
The complement is counted by A302545.

Formula

a(n) = A007716(n) - A302545(n). - Andrew Howroyd, Jan 15 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 15 2023