A330084 a(n) is the smallest k > 0 such that n occurs immediately after the decimal point in the decimal expansion of k*Pi.
36, 1, 2, 24, 3, 4, 12, 5, 6, 7, 29, 22, 15, 8, 1, 100, 93, 86, 79, 72, 65, 58, 51, 37, 30, 23, 16, 9, 2, 108, 94, 87, 80, 73, 66, 59, 52, 45, 31, 24, 17, 10, 3, 109, 102, 95, 81, 74, 67, 60, 53, 46, 39, 25, 18, 11, 4, 110, 103, 96, 89, 75, 68, 61, 54, 47, 40
Offset: 0
Examples
For n = 0: The decimal expansion of 36*Pi starts 113.097335529232... and this is the smallest multiple of Pi where 0 occurs immediately after the decimal point, so a(0) = 36.
Programs
-
Mathematica
a[n_]:=(k=1;While[Floor[(Pi*k-Floor[Pi*k])*10^Length[IntegerDigits[n]]]!=n,k++];Return[k]);Table[a[n],{n,0,67}] (* Joshua Oliver, Dec 01 2019 *)
-
PARI
pidigits(multipl, len) = floor((Pi*multipl - floor(Pi*multipl)) * 10^len) a(n) = for(k=1, oo, if(pidigits(k, #Str(n))==n, return(k)))
Formula
a(n) = 1 iff n belongs to A039916. - Rémy Sigrist, Dec 01 2019
Comments