cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330133 a(n) = (1/16)*(5 + (-1)^(1+n) - 4*cos(n*Pi/2) + 10*n^2).

Original entry on oeis.org

0, 1, 3, 6, 10, 16, 23, 31, 40, 51, 63, 76, 90, 106, 123, 141, 160, 181, 203, 226, 250, 276, 303, 331, 360, 391, 423, 456, 490, 526, 563, 601, 640, 681, 723, 766, 810, 856, 903, 951, 1000, 1051, 1103, 1156, 1210, 1266, 1323, 1381, 1440, 1501, 1563, 1626, 1690, 1756
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2019

Keywords

Comments

For n > 0, partial sums of A047201.

Crossrefs

Cf. A005891, A033583 (10*n^2), A047201.

Programs

  • Magma
    I:=[0, 1, 3, 6, 10, 16]; [n le 6 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4)-2*Self(n-5)+Self(n-6): n in [1..54]];
    
  • Maple
    gf:=(1/16)*(-exp(-x) + 5*exp(x)*(1 + 2*x + 2*x^2) - 4*cos(x)); ser := series(gf, x, 54):
    seq(factorial(n)*coeff(ser, x, n), n = 0 .. 53)
  • Mathematica
    Table[(1/16)*(5+(-1)^(1+n)-4*Cos[n*Pi/2]+10*n^2),{n,0,53}]
    LinearRecurrence[{2,-1,0,1,-2,1},{0,1,3,6,10,16},60] (* Harvey P. Dale, Jul 21 2021 *)
  • PARI
    concat([0], Vec(-x*(1 + x + x^2 + x^3 + x^4)/((-1 + x)^3*(1 + x)*(1 + x^2))+O(x^54)))

Formula

O.g.f.: -x*(1 + x + x^2 + x^3 + x^4)/((-1 + x)^3*(1 + x)*(1 + x^2)).
E.g.f.: (1/16)*(-exp(-x) + 5*exp(x)*(1 + 2*x + x^2) - 4*cos(x)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) -2*a(n-5) + a(n-6) for n > 5.
a(2*n-1) = A005891(n-1) for n > 0.
a(4*n) = 10*n^2. - Bernard Schott, Dec 06 2019