A330190 Symmetric matrix read by antidiagonals: f(i,j) = 1 + gcd(f(i-1,j), f(i,j-1)), where f(1,j) and f(i,1) are 1.
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 3, 3, 2, 1, 1, 2, 2, 4, 4, 2, 2, 1, 1, 2, 3, 3, 5, 3, 3, 2, 1, 1, 2, 2, 4, 2, 2, 4, 2, 2, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 2, 2, 1, 1, 2, 3, 3, 5, 5, 5, 5, 5, 3, 3, 2, 1
Offset: 1
Examples
An example of a triangle described in the comment: ........... ........... ..........2 ........2 3 ......2 3 4 ....2 3 4 5 Array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, ... 1, 2, 2, 3, 4, 3, 4, 3, 4, 3, ... 1, 2, 3, 4, 5, 2, 3, 4, 5, 2, ... 1, 2, 2, 3, 2, 3, 4, 5, 6, 3, ... 1, 2, 3, 4, 3, 4, 5, 6, 7, 2, ... 1, 2, 2, 3, 4, 5, 6, 7, 8, 3, ... 1, 2, 3, 4, 5, 6, 7, 8, 9, 4, ... 1, 2, 2, 3, 2, 3, 2, 3, 4, 5, ... ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (Rows n = 1..150, flattened)
- Nathaniel J. Strout, 1000 X 1000 grid
- Michael De Vlieger, 2048 X 2048 grid with color function where black = 1, red = 2 and magenta represents the maximum value in the grid (i.e., f(312,768) = f(768,312) = 41).
Programs
-
Mathematica
f[1, j_] := f[1, j] = 1; f[i_, 1] := f[i, 1] = 1; f[i_, j_] := f[i, j] = 1 + GCD[f[i - 1, j], f[i, j - 1]]; Table[f[m - k + 1, k], {m, 13}, {k, m, 1, -1}] // Flatten (* Michael De Vlieger, Aug 03 2022 *)
-
PARI
T(n)={my(M=matrix(n,n,i,j,1)); for(i=2, n, for(j=2, n, M[i,j] = 1 + gcd(M[i-1,j], M[i,j-1]))); M} { my(A=T(10)); for(i=1, #A, print(A[i,])) } \\ Andrew Howroyd, Jan 25 2020
Comments