A330203 Composite numbers k such that D(k) == 3 (mod k), where D(k) is the k-th central Delannoy number (A001850).
10, 15, 50, 370, 2418, 4371, 5341, 8430, 20535, 25338, 26958, 278674, 1194649, 4304445, 11984885, 12327121, 20746461, 27585010, 72363853, 79501818
Offset: 1
Examples
10 is in the sequence since it is composite and D(10) = 8097453 == 3 (mod 10).
References
- Hildegard Ille, Zur Irreduzibilität der Kugelfunktionen, Jahrbuch der Dissertationen der Universität Berlin, (1924).
- Peter S. Landweber, Elliptic Curves and Modular Forms in Algebraic Topology: Proceedings of a Conference held at the Institute for Advanced Study, Princeton, Sept. 15-17, 1986, Springer, 2006. See pp. 74-76.
Links
- Jean-Paul Allouche and Guentcho Skordev, Schur congruences, Carlitz sequences of polynomials and automaticity, Discrete Mathematics, Vol 214 (2000), pp. 21-49.
- S. K. Chatterjea, On Congruence Properties of Legendre Polynomials, Mathematics Magazine, Vol. 34, No. 6 (1961), pp. 329-336.
- Sen-Peng Eu, Shu-Chung Liu, and Yeong-Nan Yeh, On the Congruences of Some Combinatorial Numbers, Studies in Applied Mathematics, Vol. 116, No. 2 (2006), pp. 135-144.
- J. H. Wahab, New cases of irreducibility for Legendre polynomials, Duke Mathematical Journal, Vol. 19 (1952), pp. 165-176.
Programs
-
Mathematica
Select[Range[2500], CompositeQ[#] && Divisible[LegendreP[#, 3] - 3, #] &]
-
Sage
a, b = 1, 1 for n in range(1, 10000): a, b = b, ((6*n-3)*b - (n-1)*a)//n if (b%n == 3) and (not Integer(n).is_prime()): print(n) # Robin Visser, Aug 08 2023
Extensions
a(18) from Robin Visser, Aug 08 2023
a(19)-a(20) from Robin Visser, Sep 11 2023
Comments