A330204 Composite numbers k such that P(k, 5) == 5 (mod k), where P(k, 5) = A006442(k) is the k-th Legendre polynomial evaluated at 5.
4, 15, 35, 165, 255, 615, 1815, 1876, 2636, 2948, 5380, 5565, 11235, 28545, 288380, 903644, 1807995, 2486165, 2674060, 10538572, 11791595, 14145121, 28558415, 45153277, 45682751
Offset: 1
Examples
4 is in the sequence since it is composite and P(4, 5) = 2641 == 5 (mod 4).
Programs
-
Mathematica
Select[Range[3000], CompositeQ[#] && Divisible[LegendreP[#, 5] - 5, #] &]
-
PARI
isok(k) = Mod(subst(pollegendre(k), x, 5), k) == 5; forcomposite (k=1, 10000, if (isok(k), print1(k, ", "))); \\ Michel Marcus, Dec 06 2019
-
Sage
a, b = 1, 5 for n in range(2, 10000): a, b = b, ((10*n-5)*b - (n-1)*a)//n if (b%n == 5%n) and (not Integer(n).is_prime()): print(n) # Robin Visser, Aug 17 2023
Extensions
a(22)-a(23) from Robin Visser, Aug 17 2023
a(24)-a(25) from Robin Visser, Sep 11 2023
Comments