A330205 Composite numbers k such that P(k, 7) == 7 (mod k), where P(k, 7) = A084768(k) is the k-th Legendre polynomial evaluated at 7.
6, 15, 21, 22, 105, 119, 231, 426, 483, 1290, 1939, 4429, 4450, 4578, 10609, 12999, 14118, 16899, 23262, 26733, 37401, 39858, 82194, 108345, 121335, 127434, 302253, 380757, 724647, 836437, 840147, 1078270, 1522677, 2007411, 15009050, 28913991
Offset: 1
Examples
6 is in the sequence since it is composite and P(6, 7) = 1651609 == 7 (mod 6).
Programs
-
Mathematica
Select[Range[2000], CompositeQ[#] && Divisible[LegendreP[#, 7] - 7, #] &]
-
PARI
isok(k) = Mod(subst(pollegendre(k), x, 7), k) == 7; forcomposite (k=1, 10000, if (isok(k), print1(k, ", "))); \\ Michel Marcus, Dec 06 2019
-
Sage
a, b = 1, 7 for n in range(2, 10000): a, b = b, ((14*n-7)*b - (n-1)*a)//n if (b%n == 7%n) and (not Integer(n).is_prime()): print(n) # Robin Visser, Aug 18 2023
Extensions
a(35)-a(36) from Robin Visser, Aug 18 2023
Comments