A330206 Chebyshev pseudoprimes to base 2: composite numbers k such that T(k, 2) == 2 (mod k), where T(k, x) is the k-th Chebyshev polynomial of the first kind.
209, 231, 399, 455, 901, 903, 923, 989, 1295, 1729, 1855, 2015, 2211, 2345, 2639, 2701, 2795, 2911, 3007, 3201, 3439, 3535, 3801, 4823, 5291, 5719, 6061, 6767, 6989, 7421, 8569, 9503, 9591, 9869, 10439, 10609, 11041, 11395, 11951, 11991, 13133, 13529, 13735, 13871
Offset: 1
Keywords
Examples
209 is in the sequence since 209 = 11 * 19 is composite and T(209, 2) - 2 is divisible by 209.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- Thøger Bang, Congruence properties of Tchebycheff polynomials, Mathematica Scandinavica, Vol. 2, No. 2 (1955), pp. 327-333, alternative link,
- David Pokrass Jacobs, Mohamed O. Rayes, and Vilmar Trevisan. Characterization of Chebyshev Numbers, Algebra and Discrete Mathematics, Vol. 2 (2008), pp. 65-82.
- Mohamed O. Rayes, Vilmar Trevisan, and Paul S. Wangy, Chebyshev Polynomials and Primality Tests, ICM Technical Report, Kent State University, Kent, Ohio, 1999. See page 8.
- Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the First Kind.
- Wikipedia, Chebyshev polynomials.
Programs
-
Mathematica
Select[Range[15000], CompositeQ[#] && Divisible[ChebyshevT[#, 2] - 2, #] &]
Comments