cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A335673 Composite integers m such that A003500(m) == 4 (mod m).

Original entry on oeis.org

10, 209, 230, 231, 399, 430, 455, 530, 901, 903, 923, 989, 1295, 1729, 1855, 2015, 2211, 2345, 2639, 2701, 2795, 2911, 3007, 3201, 3439, 3535, 3801, 4823, 5291, 5719, 6061, 6767, 6989, 7421, 8569, 9503, 9591, 9869, 9890, 10439, 10609, 11041, 11395, 11951, 11991
Offset: 1

Views

Author

Ovidiu Bagdasar, Jun 17 2020

Keywords

Comments

If p is a prime, then A003500(p)==4 (mod p).
This sequence contains the composite integers for which the congruence holds.
The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=4, b=1, V(n)=A003500(n).

Examples

			m=10 is the first composite integer for which A003500(m)==4 (mod m).
		

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A005248, A335669 (a=3,b=-1), A335672 (a=3,b=1), A335674 (a=5,b=1).
A330206 is the subsequence of odd terms.

Programs

  • Mathematica
    Select[Range[3, 20000], CompositeQ[#] && Divisible[Round@LucasL[2#, Sqrt[2]] - 4, #] &] (* Amiram Eldar, Jun 18 2020 *)
  • PARI
    my(M=[1,2;1,3]); forcomposite(m=5, 10^5, if(trace(Mod(M,m)^m)==4, print1(m,", "))); \\ Joerg Arndt, Jun 18 2020

Extensions

More terms from Joerg Arndt, Jun 18 2020

A330207 Chebyshev pseudoprimes to base 3: composite numbers k such that T(k, 3) == 3 (mod k), where T(k, x) is the k-th Chebyshev polynomial of the first kind.

Original entry on oeis.org

14, 35, 119, 169, 385, 434, 574, 741, 779, 899, 935, 961, 1105, 1106, 1121, 1189, 1443, 1479, 2001, 2419, 2555, 2915, 3059, 3107, 3383, 3605, 3689, 3741, 3781, 3827, 4199, 4795, 4879, 4901, 5719, 6061, 6083, 6215, 6265, 6441, 6479, 6601, 6895, 6929, 6931, 6965
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2019

Keywords

Comments

Bang proved that T(p, a) == a (mod p) for every a > 0 and every odd prime. Rayes et al. (1999) defined Chebyshev pseudoprimes to base a as composite numbers k such that T(k, a) == a (mod k).

Examples

			14 is in the sequence since it is composite and T(14, 3) = 26102926097 == 3 (mod 14).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], CompositeQ[#] && Divisible[ChebyshevT[#, 3] - 3, #] &]

A330208 Chebyshev pseudoprimes to both base 2 and base 3: composite numbers k such that T(k, 2) == 2 (mod k) and T(k, 3) == 3 (mod k), where T(k, x) is the k-th Chebyshev polynomial of the first kind.

Original entry on oeis.org

5719, 6061, 11395, 15841, 17119, 18721, 31535, 67199, 73555, 84419, 117215, 133399, 133951, 174021, 181259, 194833, 226801, 273239, 362881, 469201, 516559, 522899, 534061, 588455, 665281, 700321, 721801, 778261, 903959, 1162349, 1561439, 1708901, 1755001, 1809697
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2019

Keywords

Comments

Bang proved that T(p, a) == a (mod p) for every a > 0 and every odd prime. Rayes et al. (1999) defined Chebyshev pseudoprimes to base a as composite numbers k such that T(k, a) == a (mod k). They noted that there are no Chebyshev pseudoprimes in both bases 2 and 3 below 2000.

Examples

			5719 is in the sequence since 5719 = 7 * 19 * 43 is composite and both T(5719 , 2) - 2 and T(5719, 3) - 3 are divisible by 5719.
		

Crossrefs

Intersection of A330206 and A330207.

Programs

  • Mathematica
    Select[Range[2*10^4], CompositeQ[#] && Divisible[ChebyshevT[#, 2] - 2, #] && Divisible[ChebyshevT[#, 3] - 3, #] &]
Showing 1-3 of 3 results.