cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A330206 Chebyshev pseudoprimes to base 2: composite numbers k such that T(k, 2) == 2 (mod k), where T(k, x) is the k-th Chebyshev polynomial of the first kind.

Original entry on oeis.org

209, 231, 399, 455, 901, 903, 923, 989, 1295, 1729, 1855, 2015, 2211, 2345, 2639, 2701, 2795, 2911, 3007, 3201, 3439, 3535, 3801, 4823, 5291, 5719, 6061, 6767, 6989, 7421, 8569, 9503, 9591, 9869, 10439, 10609, 11041, 11395, 11951, 11991, 13133, 13529, 13735, 13871
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2019

Keywords

Comments

Bang proved that T(p, a) == a (mod p) for every a > 0 and every odd prime. Rayes et al. (1999) defined Chebyshev pseudoprimes to base a as composite numbers k such that T(k, a) == a (mod k). They noted that the first Chebyshev pseudoprime to base 2 is 209.

Examples

			209 is in the sequence since 209 = 11 * 19 is composite and T(209, 2) - 2 is divisible by 209.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[15000], CompositeQ[#] && Divisible[ChebyshevT[#, 2] - 2, #] &]

A330207 Chebyshev pseudoprimes to base 3: composite numbers k such that T(k, 3) == 3 (mod k), where T(k, x) is the k-th Chebyshev polynomial of the first kind.

Original entry on oeis.org

14, 35, 119, 169, 385, 434, 574, 741, 779, 899, 935, 961, 1105, 1106, 1121, 1189, 1443, 1479, 2001, 2419, 2555, 2915, 3059, 3107, 3383, 3605, 3689, 3741, 3781, 3827, 4199, 4795, 4879, 4901, 5719, 6061, 6083, 6215, 6265, 6441, 6479, 6601, 6895, 6929, 6931, 6965
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2019

Keywords

Comments

Bang proved that T(p, a) == a (mod p) for every a > 0 and every odd prime. Rayes et al. (1999) defined Chebyshev pseudoprimes to base a as composite numbers k such that T(k, a) == a (mod k).

Examples

			14 is in the sequence since it is composite and T(14, 3) = 26102926097 == 3 (mod 14).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], CompositeQ[#] && Divisible[ChebyshevT[#, 3] - 3, #] &]
Showing 1-2 of 2 results.