A330234 Number of achiral factorizations of n into factors > 1.
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 0, 1, 2, 2, 5, 1, 0, 1, 0, 2, 2, 1, 0, 2, 2, 3, 0, 1, 2, 1, 7, 2, 2, 2, 5, 1, 2, 2, 0, 1, 2, 1, 0, 0, 2, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 2, 1, 0, 1, 2, 0, 11, 2, 2, 1, 0, 2, 2, 1, 0, 1, 2, 0, 0, 2, 2, 1, 0, 5, 2, 1, 0, 2, 2, 2
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 2, 6, 27, 36, 243, 216: (2) (6) (27) (36) (243) (216) (2*3) (3*9) (4*9) (3*81) (6*36) (3*3*3) (6*6) (9*27) (8*27) (2*3*6) (3*9*9) (12*18) (2*2*3*3) (3*3*27) (4*6*9) (3*3*3*9) (6*6*6) (3*3*3*3*3) (2*3*36) (2*3*4*9) (2*3*6*6) (2*2*3*3*6) (2*2*2*3*3*3)
Crossrefs
The fully chiral version is A330235.
Planted achiral trees are A003238.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
MM-numbers of achiral multisets of multisets are A330232.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; Table[Length[Select[facs[n],Length[graprms[primeMS/@#]]==1&]],{n,100}]
Comments