cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330234 Number of achiral factorizations of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 0, 1, 2, 2, 5, 1, 0, 1, 0, 2, 2, 1, 0, 2, 2, 3, 0, 1, 2, 1, 7, 2, 2, 2, 5, 1, 2, 2, 0, 1, 2, 1, 0, 0, 2, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 2, 1, 0, 1, 2, 0, 11, 2, 2, 1, 0, 2, 2, 1, 0, 1, 2, 0, 0, 2, 2, 1, 0, 5, 2, 1, 0, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A multiset of multisets is achiral if it is not changed by any permutation of the vertices. A factorization is achiral if taking the multiset of prime indices of each factor gives an achiral multiset of multisets.

Examples

			The a(n) factorizations for n = 2, 6, 27, 36, 243, 216:
  (2)  (6)    (27)     (36)       (243)        (216)
       (2*3)  (3*9)    (4*9)      (3*81)       (6*36)
              (3*3*3)  (6*6)      (9*27)       (8*27)
                       (2*3*6)    (3*9*9)      (12*18)
                       (2*2*3*3)  (3*3*27)     (4*6*9)
                                  (3*3*3*9)    (6*6*6)
                                  (3*3*3*3*3)  (2*3*36)
                                               (2*3*4*9)
                                               (2*3*6*6)
                                               (2*2*3*3*6)
                                               (2*2*2*3*3*3)
		

Crossrefs

The fully chiral version is A330235.
Planted achiral trees are A003238.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
MM-numbers of achiral multisets of multisets are A330232.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[facs[n],Length[graprms[primeMS/@#]]==1&]],{n,100}]