cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A083323 a(n) = 3^n - 2^n + 1.

Original entry on oeis.org

1, 2, 6, 20, 66, 212, 666, 2060, 6306, 19172, 58026, 175100, 527346, 1586132, 4766586, 14316140, 42981186, 129009092, 387158346, 1161737180, 3485735826, 10458256052, 31376865306, 94134790220, 282412759266, 847255055012
Offset: 0

Views

Author

Paul Barry, Apr 27 2003

Keywords

Comments

Binomial transform of A000225 (if this starts 1,1,3,7....).
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 1) x = y. - Ross La Haye, Jan 10 2008
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is not a subset of y and y is not a subset of x and x and y are disjoint, or 1) x equals y. Then a(n) = |R|. - Ross La Haye, Mar 19 2009

Examples

			From _Gus Wiseman_, Dec 10 2019: (Start)
Also the number of achiral set-systems on n vertices, where a set-system is achiral if it is not changed by any permutation of the covered vertices. For example, the a(0) = 1 through a(3) = 20 achiral set-systems are:
  0  0    0           0
     {1}  {1}         {1}
          {2}         {2}
          {12}        {3}
          {1}{2}      {12}
          {1}{2}{12}  {13}
                      {23}
                      {123}
                      {1}{2}
                      {1}{3}
                      {2}{3}
                      {1}{2}{3}
                      {1}{2}{12}
                      {1}{3}{13}
                      {2}{3}{23}
                      {12}{13}{23}
                      {1}{2}{3}{123}
                      {12}{13}{23}{123}
                      {1}{2}{3}{12}{13}{23}
                      {1}{2}{3}{12}{13}{23}{123}
BII-numbers of these set-systems are A330217. Fully chiral set-systems are A330282, with covering case A330229.
(End)
		

Crossrefs

Programs

Formula

G.f.: (1-4*x+5*x^2)/((1-x)*(1-2*x)*(1-3*x)).
E.g.f.: exp(3*x) - exp(2*x) + exp(x).
Row sums of triangle A134319. - Gary W. Adamson, Oct 19 2007
a(n) = 2*StirlingS2(n+1,3) + StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 10 2008
a(n) = Sum_{k=0..n}(binomial(n,k)*A255047(k)). - Yuchun Ji, Feb 23 2019

A330223 Number of non-isomorphic achiral multiset partitions of weight n.

Original entry on oeis.org

1, 1, 4, 5, 12, 9, 30, 17, 52, 44, 94, 58, 211, 103, 302, 242, 552, 299, 1024, 492, 1592, 1007, 2523, 1257, 4636, 2000, 6661, 3705, 10823, 4567, 18147, 6844, 26606, 12272, 40766, 15056, 67060, 21639, 95884, 37357, 146781, 44585, 230098, 63263, 330889, 106619, 491182, 124756
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2019

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets. It is achiral if it is not changed by any permutation of the vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 multiset partitions:
  {1}  {11}    {111}      {1111}        {11111}
       {12}    {123}      {1122}        {12345}
       {1}{1}  {1}{11}    {1234}        {1}{1111}
       {1}{2}  {1}{1}{1}  {1}{111}      {11}{111}
               {1}{2}{3}  {11}{11}      {1}{1}{111}
                          {11}{22}      {1}{11}{11}
                          {12}{12}      {1}{1}{1}{11}
                          {1}{1}{11}    {1}{1}{1}{1}{1}
                          {1}{2}{12}    {1}{2}{3}{4}{5}
                          {1}{1}{1}{1}
                          {1}{1}{2}{2}
                          {1}{2}{3}{4}
Non-isomorphic representatives of the a(6) = 30 multiset partitions:
  {111111}  {1}{11111}  {1}{1}{1111}  {1}{1}{1}{111}  {1}{1}{1}{1}{11}
  {111222}  {11}{1111}  {1}{11}{111}  {1}{1}{11}{11}  {1}{1}{2}{2}{12}
  {112233}  {111}{111}  {11}{11}{11}  {1}{2}{11}{22}
  {123456}  {111}{222}  {11}{12}{22}  {1}{2}{12}{12}
            {112}{122}  {11}{22}{33}  {1}{2}{3}{123}    {1}{1}{1}{1}{1}{1}
            {12}{1122}  {1}{2}{1122}                    {1}{1}{1}{2}{2}{2}
            {123}{123}  {12}{12}{12}                    {1}{1}{2}{2}{3}{3}
                        {12}{13}{23}                    {1}{2}{3}{4}{5}{6}
		

Crossrefs

Planted achiral trees are A003238.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Achiral integer partitions are counted by A330224.
Non-isomorphic fully chiral multiset partitions are A330227.
MM-numbers of achiral multisets of multisets are A330232.
Achiral factorizations are A330234.

Extensions

a(10)-a(11) and a(13) from Erich Friedman, Nov 20 2024
a(12) from Bert Dobbelaere, Apr 29 2025
More terms from Bert Dobbelaere, May 02 2025

A330229 Number of fully chiral set-systems covering n vertices.

Original entry on oeis.org

1, 1, 2, 42, 21336
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the vertices gives a different representative.

Examples

			The a(3) = 42 set-systems:
  {1}{2}{13}    {1}{2}{12}{13}    {1}{2}{12}{13}{123}
  {1}{2}{23}    {1}{2}{12}{23}    {1}{2}{12}{23}{123}
  {1}{3}{12}    {1}{3}{12}{13}    {1}{3}{12}{13}{123}
  {1}{3}{23}    {1}{3}{13}{23}    {1}{3}{13}{23}{123}
  {2}{3}{12}    {2}{3}{12}{23}    {2}{3}{12}{23}{123}
  {2}{3}{13}    {2}{3}{13}{23}    {2}{3}{13}{23}{123}
  {1}{12}{23}   {1}{2}{13}{123}
  {1}{13}{23}   {1}{2}{23}{123}
  {2}{12}{13}   {1}{3}{12}{123}
  {2}{13}{23}   {1}{3}{23}{123}
  {3}{12}{13}   {2}{3}{12}{123}
  {3}{12}{23}   {2}{3}{13}{123}
  {1}{12}{123}  {1}{12}{23}{123}
  {1}{13}{123}  {1}{13}{23}{123}
  {2}{12}{123}  {2}{12}{13}{123}
  {2}{23}{123}  {2}{13}{23}{123}
  {3}{13}{123}  {3}{12}{13}{123}
  {3}{23}{123}  {3}{12}{23}{123}
		

Crossrefs

The non-covering version is A330282.
Costrict (or T_0) covering set-systems are A059201.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic, fully chiral multiset partitions are A330227.
Fully chiral partitions are counted by A330228.
Fully chiral covering set-systems are A330229.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Length[graprms[#]]==n!&]],{n,0,3}]

Formula

Binomial transform is A330282.

A330232 MM-numbers of achiral multisets of multisets.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 72, 73, 76, 79, 80
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

First differs from A322554 in lacking 141.
A multiset of multisets is achiral if it is not changed by any permutation of the vertices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of non-achiral multisets of multisets (the complement of this sequence) together with their MM-numbers begins:
  35: {{2},{1,1}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
  45: {{1},{1},{2}}
  61: {{1,2,2}}
  65: {{2},{1,2}}
  69: {{1},{2,2}}
  70: {{},{2},{1,1}}
  71: {{1,1,3}}
  74: {{},{1,1,2}}
  75: {{1},{2},{2}}
  77: {{1,1},{3}}
  78: {{},{1},{1,2}}
  87: {{1},{1,3}}
  89: {{1,1,1,2}}
  90: {{},{1},{1},{2}}
		

Crossrefs

The fully-chiral version is A330236.
Achiral set-systems are counted by A083323.
MG-numbers of planted achiral trees are A214577.
MM-weight is A302242.
MM-numbers of costrict (or T_0) multisets of multisets are A322847.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
Achiral factorizations are A330234.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]]
    Select[Range[100],Length[graprms[primeMS/@primeMS[#]]]==1&]

A330217 BII-numbers of achiral set-systems.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 16, 25, 32, 42, 52, 63, 64, 75, 116, 127, 128, 129, 130, 131, 136, 137, 138, 139, 256, 385, 512, 642, 772, 903, 1024, 1155, 1796, 1927, 2048, 2184, 2320, 2457, 2592, 2730, 2868, 3007, 4096, 4233, 6416, 6553, 8192, 8330
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is achiral if it is not changed by any permutation of the vertices.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all achiral set-systems together with their BII-numbers begins:
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  16: {{1,3}}
  25: {{1},{3},{1,3}}
  32: {{2,3}}
  42: {{2},{3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  63: {{1},{2},{3},{1,2},{1,3},{2,3}}
  64: {{1,2,3}}
  75: {{1},{2},{3},{1,2,3}}
		

Crossrefs

These are numbers n such that A330231(n) = 1.
Achiral set-systems are counted by A083323.
MG-numbers of planted achiral trees are A214577.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
BII-numbers of fully chiral set-systems are A330226.
MM-numbers of achiral multisets of multisets are A330232.
Achiral factorizations are A330234.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Select[Range[0,1000],Length[graprms[bpe/@bpe[#]]]==1&]

A330235 Number of fully chiral factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 4, 1, 0, 0, 5, 1, 4, 1, 4, 0, 0, 1, 7, 2, 0, 3, 4, 1, 0, 1, 7, 0, 0, 0, 4, 1, 0, 0, 7, 1, 0, 1, 4, 4, 0, 1, 12, 2, 4, 0, 4, 1, 7, 0, 7, 0, 0, 1, 4, 1, 0, 4, 11, 0, 0, 1, 4, 0, 0, 1, 16, 1, 0, 4, 4, 0, 0, 1, 12, 5, 0, 1, 4, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A multiset of multisets is fully chiral every permutation of the vertices gives a different representative. A factorization is fully chiral if taking the multiset of prime indices of each factor gives a fully chiral multiset of multisets.

Examples

			The a(n) factorizations for n = 1, 4, 8, 12, 16, 24, 48:
  ()  (4)    (8)      (12)     (16)       (24)       (48)
      (2*2)  (2*4)    (2*6)    (2*8)      (3*8)      (6*8)
             (2*2*2)  (3*4)    (4*4)      (4*6)      (2*24)
                      (2*2*3)  (2*2*4)    (2*12)     (3*16)
                               (2*2*2*2)  (2*2*6)    (4*12)
                                          (2*3*4)    (2*3*8)
                                          (2*2*2*3)  (2*4*6)
                                                     (3*4*4)
                                                     (2*2*12)
                                                     (2*2*2*6)
                                                     (2*2*3*4)
                                                     (2*2*2*2*3)
		

Crossrefs

The costrict (or T_0) version is A316978.
The achiral version is A330234.
Planted achiral trees are A003238.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Full chiral partitions are A330228.
Fully chiral covering set-systems are A330229.
MM-numbers of fully chiral multisets of multisets are A330236.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[facs[n],Length[graprms[primeMS/@#]]==Length[Union@@primeMS/@#]!&]],{n,100}]

A330224 Number of achiral integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 13, 18, 21, 30, 32, 43, 46, 57, 64, 79, 83, 103, 107, 130, 141, 162, 171, 205, 214, 245, 258, 297, 307, 357, 373, 423, 441, 493, 513, 591, 607, 674, 702, 790, 817, 917, 938, 1040, 1078, 1186, 1216, 1362, 1395, 1534, 1580, 1738, 1779, 1956
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A multiset of multisets is achiral if it is not changed by any permutation of the vertices. An integer partition is achiral if taking the multiset of prime indices of each part gives an achiral multiset of multisets.

Examples

			The a(1) = 1 through a(7) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (52)
             (111)  (31)    (41)     (42)      (61)
                    (211)   (221)    (51)      (331)
                    (1111)  (311)    (222)     (421)
                            (2111)   (321)     (511)
                            (11111)  (411)     (2221)
                                     (2211)    (3211)
                                     (3111)    (4111)
                                     (21111)   (22111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

The fully-chiral version is A330228.
The Heinz numbers of these partitions are given by A330232.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral factorizations are A330234.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[IntegerPartitions[n],Length[graprms[primeMS/@#]]==1&]],{n,0,30}]

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A330282 Number of fully chiral set-systems on n vertices.

Original entry on oeis.org

1, 2, 5, 52, 21521
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.

Examples

			The a(0) = 1 through a(2) = 5 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

Costrict (or T_0) set-systems are A326940.
The covering case is A330229.
The unlabeled version is A330294, with covering case A330295.
Achiral set-systems are A083323.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Length[graprms[#]]==Length[Union@@#]!&]],{n,0,3}]

Formula

Binomial transform of A330229.

A330294 Number of non-isomorphic fully chiral set-systems on n vertices.

Original entry on oeis.org

1, 2, 3, 10, 899
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 10 set-systems:
  0  0    0        0
     {1}  {1}      {1}
          {2}{12}  {2}{12}
                   {1}{3}{23}
                   {2}{13}{23}
                   {3}{23}{123}
                   {2}{3}{13}{23}
                   {1}{3}{23}{123}
                   {2}{13}{23}{123}
                   {2}{3}{13}{23}{123}
		

Crossrefs

The labeled version is A330282.
Partial sums of A330295 (the covering case).
Unlabeled costrict (or T_0) set-systems are A326946.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

A330295 Number of non-isomorphic fully chiral set-systems covering n vertices.

Original entry on oeis.org

1, 1, 1, 7, 889
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 7 set-systems:
  0  {1}  {1}{12}  {1}{2}{13}
                   {1}{12}{23}
                   {1}{12}{123}
                   {1}{2}{12}{13}
                   {1}{2}{13}{123}
                   {1}{12}{23}{123}
                   {1}{2}{12}{13}{123}
		

Crossrefs

The labeled version is A330229.
First differences of A330294 (the non-covering case).
Unlabeled costrict (or T_0) set-systems are A326946.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.
Showing 1-10 of 10 results.