cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A238261 Decimal expansion of a constant related to A187235.

Original entry on oeis.org

4, 9, 1, 0, 8, 1, 4, 9, 6, 4, 5, 6, 8, 2, 5, 5, 8, 9, 8, 7, 5, 1, 5, 3, 4, 8, 0, 5, 2, 4, 0, 3, 5, 2, 1, 9, 7, 8, 9, 8, 7, 0, 5, 2, 8, 1, 7, 6, 7, 8, 4, 7, 1, 7, 6, 1, 3, 9, 4, 1, 1, 2, 0, 2, 2, 5, 6, 4, 1, 7, 8, 7, 7, 8, 7, 9, 9, 4, 7, 9, 7, 2, 9, 5, 1, 8, 1, 9, 7, 4, 1, 5, 3, 5, 5, 4, 4, 6, 1, 4, 2, 5, 0, 5, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			4.9108149645682558987515348...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[-(2*LambertW[-1,-1/2/Sqrt[E]])^2/(1+2*LambertW[-1,-1/2/Sqrt[E]]), 105]][[1]]

Formula

Equals lim n->infinity (A187235(n)/(n-1)!)^(1/n).
Equals -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)).

A330613 Triangle read by rows: T(n, k) = 1 + k - 2*n - 2*k*n + 2*n^2, with 0 <= k < n.

Original entry on oeis.org

1, 5, 2, 13, 8, 3, 25, 18, 11, 4, 41, 32, 23, 14, 5, 61, 50, 39, 28, 17, 6, 85, 72, 59, 46, 33, 20, 7, 113, 98, 83, 68, 53, 38, 23, 8, 145, 128, 111, 94, 77, 60, 43, 26, 9, 181, 162, 143, 124, 105, 86, 67, 48, 29, 10, 221, 200, 179, 158, 137, 116, 95, 74, 53, 32, 11
Offset: 1

Views

Author

Stefano Spezia, Dec 20 2019

Keywords

Comments

T(n, k) is the k-th super- and subdiagonal sum of the matrix M(n) whose permanent is A330287(n).

Examples

			n\k|   0   1   2   3   4   5
---+------------------------
1  |   1
2  |   5   2
3  |  13   8   3
4  |  25  18  11   4
5  |  41  32  23  14   5
6  |  61  50  39  28  17   6
...
For n = 3 the matrix M is
      1, 2, 3
      2, 4, 6
      3, 6, 8
and therefore T(3, 0) = 1 + 4 + 8 = 13, T(3, 1) = 2 + 6 = 8 and T(3, 2) = 3.
		

Crossrefs

Cf. A000027: diagonal; A001105: 2nd column; A001844: 1st column; A016789: 1st subdiagonal; A016885: 2nd subdiagonal; A017029: 3rd subdiagonal; A017221: 4th subdiagonal; A017461: 5th subdiagonal; A081436: row sums; A132209: 3rd column; A164284: 7th subdiagonal; A269044: 6th subdiagonal.

Programs

  • Mathematica
    Flatten[Table[1+k-2n-2k*n+2n^2,{n,1,11},{k,0,n-1}]] (* or *)
    r[n_] := Table[SeriesCoefficient[(1-x*(2-5x+2(1+x)y))/((1-x)^3*(1-y)^2), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n-1}]; Flatten[Array[r, 11]] (* or *)
    r[n_] := Table[SeriesCoefficient[Exp[x+y]*(1+2x(x-y)+y), {x, 0, i}, {y, 0, j}]*i!*j!, {i, n, n}, {j, 0, n-1}]; Flatten[Array[r, 11]]

Formula

O.g.f.: (1 - x*(2 - 5*x + 2*(1 + x)*y))/((1 - x)^3*(1 - y)^2).
E.g.f.: exp(x+y)*(1 + 2*x*(x - y) + y).
T(n, k) = A001844(n-1) - k*A005408(n-1), with 0 <= k < n. [Typo corrected by Stefano Spezia, Feb 14 2020]

A330700 a(n) = (n - 1)*n*(2*n^2 + 4*n - 1)/6.

Original entry on oeis.org

0, 0, 5, 29, 94, 230, 475, 875, 1484, 2364, 3585, 5225, 7370, 10114, 13559, 17815, 23000, 29240, 36669, 45429, 55670, 67550, 81235, 96899, 114724, 134900, 157625, 183105, 211554, 243194, 278255, 316975, 359600, 406384, 457589, 513485, 574350, 640470, 712139, 789659
Offset: 0

Views

Author

Stefano Spezia, Dec 26 2019

Keywords

Comments

Conjectures: (Start)
For n > 1, a(n) is the absolute value of the trace of the 2nd exterior power of an n X n square matrix M(n) defined as M[i,j,n] = i*j if i < 3 or j < 3 and M[i,j,n] = 2*(i + j) - 4 otherwise (see A330287). Equivalently, a(n) is the absolute value of the coefficient of the term [x^(n-2)] in the characteristic polynomial of M(n), or the absolute value of the sum of all principal minors of M(n) of size 2.
For k > 2, the trace of the k-th exterior power of M(n) is equal to zero.
(End)

Crossrefs

Cf. A000217, A001105 (super- and subdiagonal sum of M(n)), A001844 (trace of M(n)), A005843 (antitrace of M(n)), A268581, A319840, A322844, A330287 (permanent of M(n)).

Programs

  • Magma
    I:=[0, 0, 5, 29, 94]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]];
    
  • Mathematica
    Table[(n-1)n(2n^2+4n-1)/6,{n,0,39}]
  • PARI
    my(x='x + O('x^39)); concat([0, 0], Vec(serlaplace((1/6)*exp(x)*x^2*(15+14*x+2*x^2))))
    
  • Sage
    (x^2*(5+4*x-x^2)/(1-x)^5).series(x, 40).coefficients(x, sparse=False)

Formula

O.g.f.: x^2*(5 + 4*x - x^2)/(1 - x)^5.
E.g.f.: exp(x)*x^2*(15 + 14*x + 2*x^2)/6.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
a(n) = A000217(n-1)*A268581(n-1)/3 for n > 0.
Sum_{k>=2} 1/a(k) = (1/5)*((18 + 7*sqrt(6))*H(2-sqrt(3/2)) + (18 - 7*sqrt(6))*H(2+sqrt(3/2)) - 30) = 0.254905801002729039998040617... where H(x) = Integral_{t=0..1} (1 - t^x)/(1 - t) dt is the function that interpolates the harmonic numbers.
Showing 1-3 of 3 results.