cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A187235 Number of ways to place n nonattacking semi-bishops on an n X n board.

Original entry on oeis.org

1, 5, 51, 769, 15345, 381065, 11323991, 391861841, 15476988033, 687029386845, 33861652925595, 1834814222811361, 108411291759763681, 6936921762461326545, 477881176664541171375, 35264213540563039871265, 2775185864375851234241985, 232010235620834821000259765, 20534530616200868936398461635
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 08 2011

Keywords

Comments

Two semi-bishops do not attack each other if they are in the same NorthWest-SouthEast diagonal.
Conjecture: Number of parity preserving permutations of the set {1, 2, ..., 2n+1} with exactly n+1 cycles (see A246117). - Peter Luschny, Feb 09 2015

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,1,Coefficient[Expand[Product[x+i,{i,1,n}]*Product[x+i,{i,1,n-1}],x],x,n-1]],{n,1,50}]
    Table[(-1)^n*Sum[StirlingS1[n+1,j]*StirlingS1[n,n-j+1],{j,1,n}],{n,1,50}] (* Explicit formula, Vaclav Kotesovec, Mar 24 2011 *)
  • PARI
    a(n) = {(-1)^n*sum(i=0, n, stirling(n,i,1) * stirling(n+1,n-i+1,1))} \\ Andrew Howroyd, May 09 2020

Formula

a(n)/(n-1)! ~ 0.24252191 * 4.9108149^n where the second constant is 1/(z*(1-z)) = 4.910814964..., where z=0.715331862959... is a root of the equation z=2*(z-1)*log(1-z).
For constants see A238261 and A238262. - Vaclav Kotesovec, Feb 21 2014
a(n) = (-1)^n * Sum_{i=0..n} Stirling1(n,i) * Stirling1(n+1,n-i+1). - Ryan Brooks, May 09 2020

A129256 Central coefficient of Product_{k=0..n} (1+k*x)^2.

Original entry on oeis.org

1, 2, 13, 144, 2273, 46710, 1184153, 35733376, 1251320145, 49893169050, 2232012515445, 110722046632560, 6032418472347265, 358103844593876654, 23007314730623658225, 1590611390957425536000, 117745011140615270168865
Offset: 0

Views

Author

Paul D. Hanna, Apr 06 2007

Keywords

Examples

			This sequence equals the central terms of the triangle in which the g.f. of row n is (1+x)^2*(1+2x)^2*(1+3x)^2*...*(1+n*x)^2, as illustrated by:
  (1);
   1, (2),  1;
   1,  6, (13),  12,     4;
   1, 12,  58, (144),  193,    132,      36;
   1, 20, 170,  800, (2273),  3980,    4180,   2400,    576;
   1, 30, 395, 3000, 14523, (46710), 100805, 143700, 129076, 65760, 14400;
  ...
		

Crossrefs

Cf. A008275 (Stirling1 numbers), A187235, A238261, A246117, A254882, A350376.

Programs

  • Mathematica
    Flatten[{1,Table[Coefficient[Expand[Product[(1+k*x),{k,0,n}]^2],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
  • PARI
    a(n)=polcoeff(prod(k=0,n,1+k*x)^2,n)
    
  • PARI
    {a(n)=(-1)^n*sum(k=0,n,stirling(n+1,k+1,1)*stirling(n+1,n-k+1,1))} \\ Paul D. Hanna, Jul 16 2009

Formula

a(n) = (-1)^n*Sum_{k=0..n} Stirling1(n+1,k+1)*Stirling1(n+1,n-k+1). - Paul D. Hanna, Jul 16 2009
a(n) ~ c * d^n * (n-1)!, where d = A238261 = -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)) = 4.910814964568255..., c = (-LambertW(-1, -exp(-1/2)/2))^(3/2)/(sqrt(-1 - LambertW(-1, -exp(-1/2)/2))*Pi) = 0.851946112888790982829578047527831525434714038256... . - Vaclav Kotesovec, Feb 10 2015, updated May 14 2025

A342111 a(n) = (-1)^n * Sum_{k=0..n} Stirling1(n,k) * Stirling1(n,n-k).

Original entry on oeis.org

1, 0, 1, 12, 193, 3980, 100805, 3034920, 105994833, 4215106728, 188097696345, 9309515255700, 506149663220641, 29989851619249236, 1923467938147053389, 132771455705186298000, 9814431285244231295265, 773520674985391641371280, 64752473306596841023424945
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2021

Keywords

Crossrefs

Programs

  • Magma
    [(&+[(-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 03 2021
    
  • Mathematica
    Table[(-1)^n*Sum[StirlingS1[n, k]*StirlingS1[n, n-k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = (-1)^n*sum(k=0, n, stirling(n, k, 1)*stirling(n, n-k, 1)); \\ Michel Marcus, Feb 28 2021
    
  • Sage
    [sum( stirling_number1(n, k)*stirling_number1(n, n-k) for k in (0..n) ) for n in (0..30)] # G. C. Greubel, Jun 03 2021

Formula

a(n) ~ c * d^n * (n-1)!, where
d = A238261 = -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)) = 4.9108149645682558987515348052403521978987052817678471761394112...
c = 1/(4*sqrt(-LambertW(-1, -exp(-1/2)/2)) * sqrt(-1 - LambertW(-1, -exp(-1/2)/2))*Pi) = 0.06903826111269387517867145566264007373042059749428879149076344304196548... - Vaclav Kotesovec, Feb 28 2021, updated May 14 2025
a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^2. - Seiichi Manyama, May 13 2025

A330287 Permanent of the n-th principal submatrix M(n) of A319840.

Original entry on oeis.org

1, 1, 8, 208, 11488, 1093056, 158972160, 32734095360, 9049229328384, 3230305304002560, 1445344680438005760, 791762592707031859200, 521023492500173338705920, 405448567547957922512240640, 368210800911998093644372377600, 385879616532879866123928993792000, 462151848929747968377341029122048000
Offset: 0

Views

Author

Stefano Spezia, Dec 11 2019

Keywords

Comments

The matrix M(n) is defined as M[i,j,n] = i*j if i < 3 or j < 3 and M[i,j,n] = 2*(i + j) - 4 otherwise.
det(M(0)) = det(M(1)) = 1 and det(M(n)) = 0 for n > 1.
For n > 0, the trace of the matrix M(n) is A001844(n-1).
For n > 0, the antitrace of the matrix M(n) is A005893(n-1).
For n > 1, the super- and subdiagonal sum is A001105(n-1).

Examples

			For n = 1 the matrix M(1) is
  1
with permanent a(1) = 1.
For n = 2 the matrix M(2) is
  1, 2
  2, 4
with permanent a(2) = 8.
For n = 3 the matrix M(3) is
  1,  2,  3
  2,  4,  6
  3,  6,  8
with permanent a(3) = 208.
		

Crossrefs

Programs

  • PARI
    tm(n) = matrix(n, n, i, j, if ((i<3) || (j<3), i*j, 2*(i+j)-4));
    a(n) = matpermanent(tm(n));

Formula

a(n) ~ c * A238261^n * n!^2 / sqrt(n), where c = 0.0286685259829... - Vaclav Kotesovec, Aug 19 2021

A238262 Decimal expansion of a multiplicative constant related to A187235.

Original entry on oeis.org

2, 4, 2, 5, 2, 1, 9, 1, 2, 8, 1, 5, 2, 3, 5, 9, 8, 5, 9, 4, 9, 3, 2, 1, 0, 8, 0, 3, 8, 6, 3, 9, 2, 0, 2, 9, 5, 1, 3, 8, 3, 2, 8, 7, 2, 3, 5, 3, 2, 7, 6, 1, 2, 1, 1, 5, 4, 1, 0, 1, 7, 8, 0, 6, 6, 8, 7, 0, 5, 1, 9, 4, 8, 3, 8, 5, 5, 0, 9, 5, 1, 1, 5, 9, 2, 0, 4, 4, 5, 3, 9, 3, 9, 9, 8, 0, 6, 5, 5, 0, 4, 2, 0, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			0.242521912815235985949321...
		

Crossrefs

Formula

Equals lim n->infinity A187235(n) / ((n-1)! * A238261^n).
Showing 1-5 of 5 results.