cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A238261 Decimal expansion of a constant related to A187235.

Original entry on oeis.org

4, 9, 1, 0, 8, 1, 4, 9, 6, 4, 5, 6, 8, 2, 5, 5, 8, 9, 8, 7, 5, 1, 5, 3, 4, 8, 0, 5, 2, 4, 0, 3, 5, 2, 1, 9, 7, 8, 9, 8, 7, 0, 5, 2, 8, 1, 7, 6, 7, 8, 4, 7, 1, 7, 6, 1, 3, 9, 4, 1, 1, 2, 0, 2, 2, 5, 6, 4, 1, 7, 8, 7, 7, 8, 7, 9, 9, 4, 7, 9, 7, 2, 9, 5, 1, 8, 1, 9, 7, 4, 1, 5, 3, 5, 5, 4, 4, 6, 1, 4, 2, 5, 0, 5, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			4.9108149645682558987515348...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[-(2*LambertW[-1,-1/2/Sqrt[E]])^2/(1+2*LambertW[-1,-1/2/Sqrt[E]]), 105]][[1]]

Formula

Equals lim n->infinity (A187235(n)/(n-1)!)^(1/n).
Equals -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)).

A238262 Decimal expansion of a multiplicative constant related to A187235.

Original entry on oeis.org

2, 4, 2, 5, 2, 1, 9, 1, 2, 8, 1, 5, 2, 3, 5, 9, 8, 5, 9, 4, 9, 3, 2, 1, 0, 8, 0, 3, 8, 6, 3, 9, 2, 0, 2, 9, 5, 1, 3, 8, 3, 2, 8, 7, 2, 3, 5, 3, 2, 7, 6, 1, 2, 1, 1, 5, 4, 1, 0, 1, 7, 8, 0, 6, 6, 8, 7, 0, 5, 1, 9, 4, 8, 3, 8, 5, 5, 0, 9, 5, 1, 1, 5, 9, 2, 0, 4, 4, 5, 3, 9, 3, 9, 9, 8, 0, 6, 5, 5, 0, 4, 2, 0, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			0.242521912815235985949321...
		

Crossrefs

Formula

Equals lim n->infinity A187235(n) / ((n-1)! * A238261^n).

A010790 a(n) = n!*(n+1)!.

Original entry on oeis.org

1, 2, 12, 144, 2880, 86400, 3628800, 203212800, 14631321600, 1316818944000, 144850083840000, 19120211066880000, 2982752926433280000, 542861032610856960000, 114000816848279961600000, 27360196043587190784000000, 7441973323855715893248000000
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the symmetrical n X n matrix M_n(i,j)=1/min(i,j); then for n>=0 det(M_n)=(-1)^(n-1)/a(n-1). - Benoit Cloitre, Apr 27 2002
If n women and n men are to be seated around a circular table, with no two of the same sex seated next to each other, the number of possible arrangements is a(n-1). - Ross La Haye, Jan 06 2009
a(n-1) is also the number of (directed) Hamiltonian cycles in the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Jul 15 2011
a(n) is also number of ways to place k nonattacking semi-bishops on an n X n board, sum over all k>=0 (for definition see A187235). - Vaclav Kotesovec, Dec 06 2011
a(n) is number of permutations of {1,2,3,...,2n} such that no odd numbers are adjacent. - Ran Pan, May 23 2015
a(n) is number of permutations of {1,2,3,...,2n+1} such that no odd numbers are adjacent. - Ran Pan, May 23 2015
a(n-1) is the number of elements of the wreath product of S_n and S_2 with cycle partition equal to (2n), where S_n is the symmetric group of order n. - Josaphat Baolahy, Mar 12 2024

Examples

			G.f. = 1 + 2*x + 12*x^2 + 144*x^3 + 2880*x^4 + 86400*x^5 + ...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 63-65.
  • Kenneth H. Rosen, Editor-in-Chief, Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000, page 91. [Ross La Haye, Jan 06 2009]

Crossrefs

Second column of triangle A129065.

Programs

  • Magma
    [Factorial(n)*Factorial(n+1): n in [0..20]]; // Vincenzo Librandi, Aug 08 2014
    
  • Maple
    f:= n-> n!*(n+1)!: seq(f(n), n=0..30);
  • Mathematica
    s=1;lst={s};Do[s+=(s*=n)*n;AppendTo[lst, s], {n, 1, 4!, 1}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 15 2008 *)
    Times@@@Partition[Range[0,25]!,2,1] (* Harvey P. Dale, Jun 17 2011 *)
  • PARI
    a(n)= n!^2*(n+1) \\ Charles R Greathouse IV, Jul 31 2011
    
  • Python
    from math import factorial
    def A010790(n): return factorial(n)**2*(n+1) # Chai Wah Wu, Apr 22 2024
  • Sage
    [stirling_number1(n,1)*factorial (n-2) for n in range(2, 17)] # Zerinvary Lajos, Jul 07 2009
    

Formula

From Karol A. Penson, Oct 23 2001: (Start)
Integral representation as n-th moment of a positive function f on the positive half axis, where f(x) = 2*sqrt(x)*BesselK(1, 2*sqrt(x)). Then:
a(n) = Integral_{x>=0} x^n * f(x) dx.
G.f.: a(0) = 1 and a(n) = subs(x=0, n!*diff(1/((x-1)^2), x$n)) for n >= 1. (End)
Sum_{i >=0} 1/a(i) = A096789. - Gerald McGarvey, Jun 10 2004
With b(n)=A002378(n) for n>0 and b(0)=1, a(n) = b(n)*b(n-1)...*b(0). - Tom Copeland, Sep 21 2011
a(n) = det(PS(i+1,j), 1 <= i,j <= n), where PS(n,k) are Legendre-Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
a(n) = (2*n)! / A000108(n) which implies that the e.g.f. of A126120 is Sum_{k>=0} x^(2*k) / a(k). - Michael Somos, Nov 15 2014
0 = a(n)*(+18*a(n+2) - 15*a(n+3) + a(n+4)) + a(n+1)*(-9*a(n+2) - 4*a(n+3)) + a(n+2)*(+3*a(n+2)) for all n>=0. - Michael Somos, Nov 15 2014
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ 2*Pi*n^(2*n+2)/exp(2*n).
Sum_{n>=0} (-1)^n/a(n) = BesselJ(1,2) = 0.576724807756873387202448... = A348607 (End)
D-finite with recurrence: a(n) -n*(n+1)*a(n-1)=0. - R. J. Mathar, Jan 27 2020
a(n) = 1/([x^n] hypergeom([], [2], x)). - Peter Luschny, Sep 13 2024

A002465 Number of ways to place n nonattacking bishops on an n X n board.

Original entry on oeis.org

1, 1, 4, 26, 260, 3368, 53744, 1022320, 22522960, 565532992, 15915225216, 496911749920, 17029582652416, 636101065346560, 25705530908501760, 1118038500044633088, 52054862490790200576, 2584158975023147147264
Offset: 0

Views

Author

Keywords

Comments

The old name of this sequence was wrong. It was corrected by Vaclav Kotesovec, Feb 19 2011. Kotesovec remarks that the maximal number of nonattacking bishops on an n X n board is 2n-2, and there are 2^n ways to place them. See the Kotesovec link.

Examples

			a(3) = 26: ways to place 3 nonattacking bishops on a 3 X 3 board:
  XXX XXO XXO XOX OXO
  OOO OOO OOO OOO OXO
  OOO XOO OXO OXO OXO
  (4) (8) (8) (4) (2)
		

References

  • W. Ahrens, Mathematische Unterhaltungen und Spiele. Teubner, Leipzig, Vol. 1, 3rd ed., 1921; Vol. 2, 2nd ed., 1918. See Vol. 1, p. 271.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Vilenkin, Populyarnaja kombinatorika, 1972, p. 166.

Crossrefs

Main diagonal of A378590.

Programs

  • Mathematica
    peven[i_]:=(Sum[(-1)^j*Binomial[n-i-1,j]/(n-i-1)!*(n-i+1-j)^(n/2)*(n-i-j)^(n/2-1),{j,0,n-i-1}]);
    poddblack[i_]:=(Sum[(-1)^j*Binomial[n-i-1,j]/(n-i-1)!*(n-i+1-j)^((n+1)/2)*(n-i-j)^((n-3)/2),{j,0,n-i-1}]);
    poddwhite[i_]:=(Sum[(-1)^j*Binomial[n-i-1,j]/(n-i-1)!*(n-i+1-j)^((n-1)/2)*(n-i-j)^((n-1)/2),{j,0,n-i-1}]);
    Table[If[n==1,1,Sum[If[EvenQ[n],peven[i]*peven[n-i],poddblack[i]*poddwhite[n-i]],{i,1,n-1}]],{n,1,50}]
    (* Alternative formula with Stirling numbers of the second kind: *)
    Table[If[n==1,1, Sum[Sum[Binomial[Floor[(n+1)/2],j] * StirlingS2[j+Floor[n/2],n-i], {j,0,Floor[(n+1)/2]}] * Sum[Binomial[Floor[n/2],j] * StirlingS2[j+Floor[(n+1)/2],i], {j,0,Floor[n/2]}], {i,1,n-1}]], {n,1,50}] (* Vaclav Kotesovec, Mar 23 2011 *)

Formula

Asymptotic: a(n)/(n-1)! ~ 0.631266 * 3.08827^n. - Vaclav Kotesovec, Mar 23 2011
The second constant is 2/(z*(2-z)) = 3.0882773047417401791158400820254..., where z is the root z=1.593624260040... of the equation exp(z)*(2-z)=2. - Vaclav Kotesovec, May 27 2011
For constants see A238258 and A238260. - Vaclav Kotesovec, Feb 21 2014

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Nov 20 2006
Definition corrected by Vaclav Kotesovec, Feb 19 2011
Terms a(11)-a(17) from Vaclav Kotesovec, Mar 09 2011
a(0)=1 prepended by Alois P. Heinz, Dec 01 2024

A187646 (Signless) Central Stirling numbers of the first kind s(2n,n).

Original entry on oeis.org

1, 1, 11, 225, 6769, 269325, 13339535, 790943153, 54631129553, 4308105301929, 381922055502195, 37600535086859745, 4070384057007569521, 480544558742733545125, 61445535102359115635655, 8459574446076318147830625, 1247677142707273537964543265, 196258640868140652967646352465
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Comments

Number of permutations with n cycles on a set of size 2n.

Crossrefs

Programs

  • Maple
    seq(abs(Stirling1(2*n,n)), n=0..20);
  • Mathematica
    Table[Abs[StirlingS1[2n, n]], {n, 0, 12}]
    N[1 + 1/(2 LambertW[-1, -Exp[-1/2]/2]), 50] (* The constant z in the asymptotic - Vladimir Reshetnikov, Oct 08 2016 *)
  • Maxima
    makelist(abs(stirling1(2*n,n)),n,0,12);
    
  • PARI
    for(n=0,50, print1(abs(stirling(2*n, n, 1)), ", ")) \\ G. C. Greubel, Nov 09 2017

Formula

Asymptotic: a(n) ~ (2*n/(e*z*(1-z)))^n*sqrt((1-z)/(2*Pi*n*(2z-1))), where z=0.715331862959... is a root of the equation z = 2*(z-1)*log(1-z). - Vaclav Kotesovec, May 30 2011
Equivalent: a(n) ~ n!*(2*r^2/(r-1))^n/(2*Pi*n*sqrt(r-2)), where r=A226278. - Natalia L. Skirrow, Jul 13 2025
From Seiichi Manyama, May 20 2025: (Start)
a(n) = A132393(2*n,n).
a(n) = (2*n)! * [x^(2*n)] (-log(1 - x))^n / n!. (End)

A129256 Central coefficient of Product_{k=0..n} (1+k*x)^2.

Original entry on oeis.org

1, 2, 13, 144, 2273, 46710, 1184153, 35733376, 1251320145, 49893169050, 2232012515445, 110722046632560, 6032418472347265, 358103844593876654, 23007314730623658225, 1590611390957425536000, 117745011140615270168865
Offset: 0

Views

Author

Paul D. Hanna, Apr 06 2007

Keywords

Examples

			This sequence equals the central terms of the triangle in which the g.f. of row n is (1+x)^2*(1+2x)^2*(1+3x)^2*...*(1+n*x)^2, as illustrated by:
  (1);
   1, (2),  1;
   1,  6, (13),  12,     4;
   1, 12,  58, (144),  193,    132,      36;
   1, 20, 170,  800, (2273),  3980,    4180,   2400,    576;
   1, 30, 395, 3000, 14523, (46710), 100805, 143700, 129076, 65760, 14400;
  ...
		

Crossrefs

Cf. A008275 (Stirling1 numbers), A187235, A238261, A246117, A254882, A350376.

Programs

  • Mathematica
    Flatten[{1,Table[Coefficient[Expand[Product[(1+k*x),{k,0,n}]^2],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
  • PARI
    a(n)=polcoeff(prod(k=0,n,1+k*x)^2,n)
    
  • PARI
    {a(n)=(-1)^n*sum(k=0,n,stirling(n+1,k+1,1)*stirling(n+1,n-k+1,1))} \\ Paul D. Hanna, Jul 16 2009

Formula

a(n) = (-1)^n*Sum_{k=0..n} Stirling1(n+1,k+1)*Stirling1(n+1,n-k+1). - Paul D. Hanna, Jul 16 2009
a(n) ~ c * d^n * (n-1)!, where d = A238261 = -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)) = 4.910814964568255..., c = (-LambertW(-1, -exp(-1/2)/2))^(3/2)/(sqrt(-1 - LambertW(-1, -exp(-1/2)/2))*Pi) = 0.851946112888790982829578047527831525434714038256... . - Vaclav Kotesovec, Feb 10 2015, updated May 14 2025

A342111 a(n) = (-1)^n * Sum_{k=0..n} Stirling1(n,k) * Stirling1(n,n-k).

Original entry on oeis.org

1, 0, 1, 12, 193, 3980, 100805, 3034920, 105994833, 4215106728, 188097696345, 9309515255700, 506149663220641, 29989851619249236, 1923467938147053389, 132771455705186298000, 9814431285244231295265, 773520674985391641371280, 64752473306596841023424945
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2021

Keywords

Crossrefs

Programs

  • Magma
    [(&+[(-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 03 2021
    
  • Mathematica
    Table[(-1)^n*Sum[StirlingS1[n, k]*StirlingS1[n, n-k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = (-1)^n*sum(k=0, n, stirling(n, k, 1)*stirling(n, n-k, 1)); \\ Michel Marcus, Feb 28 2021
    
  • Sage
    [sum( stirling_number1(n, k)*stirling_number1(n, n-k) for k in (0..n) ) for n in (0..30)] # G. C. Greubel, Jun 03 2021

Formula

a(n) ~ c * d^n * (n-1)!, where
d = A238261 = -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)) = 4.9108149645682558987515348052403521978987052817678471761394112...
c = 1/(4*sqrt(-LambertW(-1, -exp(-1/2)/2)) * sqrt(-1 - LambertW(-1, -exp(-1/2)/2))*Pi) = 0.06903826111269387517867145566264007373042059749428879149076344304196548... - Vaclav Kotesovec, Feb 28 2021, updated May 14 2025
a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^2. - Seiichi Manyama, May 13 2025

A246117 Number of parity preserving permutations of the set {1,2,...,n} with exactly k cycles.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 2, 5, 4, 1, 0, 4, 12, 13, 6, 1, 0, 12, 40, 51, 31, 9, 1, 0, 36, 132, 193, 144, 58, 12, 1, 0, 144, 564, 904, 769, 376, 106, 16, 1, 0, 576, 2400, 4180, 3980, 2273, 800, 170, 20, 1, 0, 2880, 12576, 23300, 24080, 15345, 6273, 1650, 270, 25, 1
Offset: 1

Views

Author

Peter Bala, Aug 14 2014

Keywords

Comments

An analog of the Stirling numbers of the first kind, A008275.
A permutation p of the set {1,2,...,n} is called a parity-preserving permutation if p(i) = i (mod 2) for i = 1,2,...,n. The set of all such permutations forms a subgroup of order A010551 of the symmetric group on n letters. This triangle gives the number of parity preserving permutations of the set {1,2,...,n} with exactly k cycles. An example is given below.
If we write a parity-preserving permutation p in one line notation as ( p(1) p(2) p(3)... p(n) ) then the first entry p(1) is odd and thereafter the entries alternate in parity. Thus the permutation p belongs to the set of parity-alternate permutations studied by Tanimoto.
The row generating polynomials form the polynomial sequence x, x^2, x^2*(x + 1), x^2*(x + 1)^2, x^2*(x + 1)^2*(x + 2), x^2*(x + 1)^2*(x + 2)^2, .... Except for differences in offset, this triangle is the Galton array G(floor(n/2),1) in the notation of Neuwirth with inverse array G(-floor(k/2),1). See A246118 for the unsigned version of the inverse array.
From Peter Bala, Apr 12 2018: (Start)
In the cycle decomposition of a parity preserving permutation, the entries in a given cycle are either all even or all odd. Define T(n,k,i), 1 <= i <= k-1, (a refinement of the table number T(n,k)) to be the number of parity preserving permutations of the set {1,2,...,n} with exactly k cycles and with i of the cycles having all even entries. Clearly, T(n,k) = Sum_{i = 1..k-1} T(n,k,i).
A simple combinatorial argument (cf. Dzhumadil'daev and Yeliussizov, Proposition 5.3) gives the recurrences
T(2*n,k,i) = T(2n-1,k-1,i-1) + (n-1)*T(2*n-1,k,i) and
T(2*n+1,k,i) = T(2*n,k-1,i) + n*T(2*n,k,i).
The solution to these recurrences for n >= 1 is T(2*n,k,i) = S1(n,i)*S1(n,k-i) and T(2*n+1,k,i) = S1(n,i)*S1(n+1,k-i), where S1(n,k) = |A008275(n,k)| denotes the (unsigned) Stirling cycle numbers of the first kind. Kotesovec's formula for T(n,k) below follows immediately from this. Cf. A274310. (End)
Triangle of allowable Stirling numbers of the first kind (with a different offset). See Cai and Readdy, Table 4. - Peter Bala, Apr 14 2018

Examples

			Triangle begins
n\k| 1   2    3    4    5   6   7   8
= = = = = = = = = = = = = = = = = = =
1  | 1
2  | 0   1
3  | 0   1    1
4  | 0   1    2    1
5  | 0   2    5    4    1
6  | 0   4   12   13    6   1
7  | 0  12   40   51   31   9   1
8  | 0  36  132  193  144  58  12  1
...
n = 5: The 12 parity-preserving permutations of S_5 and their cycle structure are shown in the table below.
= = = = = = = = = = = = = = = = = = = = = = = = = =
Parity-preserving      Cycle structure     # cycles
permutation
= = = = = = = = = = = = = = = = = = = = = = = = = =
54123                   (153)(24)              2
34521                   (135)(24)              2
34125                   (13)(24)(5)            3
14523                   (1)(24)(35)            3
32541                   (135)(2)(4)            3
52143                   (153)(2)(4)            3
54321                   (15)(24)(3)            3
32145                   (13)(2)(4)(5)          4
14325                   (1)(24)(3)(5)          4
12543                   (1)(2)(35)(4)          4
52341                   (15)(2)(3)(4)          4
12345                   (1)(2)(3)(4)(5)        5
= = = = = = = = = = = = = = = = = = = = = = = = = =
This gives row 5 as [2, 5, 4, 1] with generating function 2*x^2 + 5*x^3 + 4*x^4 + x^5 = ( x*(x + 1) )^2 * (x + 2).
		

Crossrefs

A002620 (1st subdiagonal), A008275, A010551 (row sums and column k = 2), A125300, A203151 (column k = 3), A203246 (2nd subdiagonal), A246118 (unsigned matrix inverse).

Programs

  • Maple
    A246117 := proc(n,k)
        if n = k then
            1;
        elif k <= 1 or k > n then
            0;
        else
            floor((n-1)/2)*procname(n-1,k)+procname(n-1,k-1) ;
        end if;
    end proc:
    seq(seq(A246117(n,k),k=1..n),n=1..8) ; # R. J. Mathar, Oct 01 2016
  • Mathematica
    Flatten[{1,Rest[Table[Table[(-1)^(n-k) * Sum[StirlingS1[Floor[(n+1)/2],j] * StirlingS1[Floor[n/2],k-j],{j,1,k-1}],{k,1,n}],{n,1,12}]]}] (* Vaclav Kotesovec, Feb 09 2015 *)

Formula

Recurrence equations: T(1,1) = 1, T(n,1) = 0 for n >= 2; T(n,k) = 0 for k > n; otherwise T(n+1,k) = floor(n/2)*T(n,k) + T(n,k-1).
Row generating polynomials R(n,x): R(2*n,x) = ( x*(x + 1)*...*(x + n - 1) )^2; R(2*n + 1,x) = R(2*n,x)*(x + n) with the convention R(0,x) = 1.
Row sums: A010551; Column 3: A203151;
First subdiagonal: A002620; 2nd subdiagonal: A203246.
T(n,k) = (-1)^(n-k) * Sum_{j=1..k-1} Stirling1(floor((n+1)/2),j) * Stirling1(floor(n/2),k-j), for k>1. - Vaclav Kotesovec, Feb 09 2015

A088789 E.g.f.: REVERT(2*x/(1+exp(x))) = Sum_{n>=0} a(n)*x^n/n!.

Original entry on oeis.org

0, 1, 1, 3, 14, 90, 738, 7364, 86608, 1173240, 17990600, 308055528, 5826331440, 120629547584, 2713659864832, 65909241461760, 1718947213795328, 47912968352783232, 1421417290991105664, 44717945211445216640, 1487040748881346835200, 52117255681017313721088
Offset: 0

Views

Author

Paul D. Hanna, Oct 15 2003

Keywords

Comments

a(n+1) is also number of ways to place n nonattacking composite pieces semi-rook + semi-bishop on an n X n board. Two semi-bishops (see A187235) do not attack each other if they are in the same northwest-southeast diagonal. Two semi-rooks do not attack each other if they are in the same column (see also semi-queens, A099152). - Vaclav Kotesovec, Dec 22 2011

Crossrefs

Main diagonal of A378561 (shifted).

Programs

  • Maple
    a:= n->coeff(series(x/2-LambertW(-1/2*x*exp(1/2*x)), x=0, n+1), x, n)*n!:
    seq(a(n), n=0..30); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    Table[n!/2^n*Sum[2^j/j!*StirlingS2[n-1,n-j],{j,1,n}],{n,1,50}] (* Vaclav Kotesovec, Dec 25 2011 *)
    With[{nmax = 50}, CoefficientList[Series[x/2 - LambertW[-x*Exp[x/2]/2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 14 2017 *)
  • PARI
    a(n)=local(A); if(n<0,0,A=x+O(x^n);n!*polcoeff(serreverse(2*x/(1 + exp(x))), n))
    
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(x/2 - lambertw(-x*exp(x/2)/2)))) \\ G. C. Greubel, Nov 14 2017

Formula

E.g.f.: x/2 - LambertW(-x*exp(x/2)/2). - Vladeta Jovovic, Feb 12 2008
a(n) = (1/2^n)*Sum_{k=1..n} binomial(n,k)*k^(n-1) = A038049(n)/2^n, n>1. - Vladeta Jovovic, Feb 12 2008
Asymptotics: a(n)/(n-2)! ~ b * q^(n-1) * sqrt(n), where q = 1/(2*LambertW(1/exp(1))) = 1.795560738334311... is the root of the equation 2*q = exp(1+1/(2*q)) and b = 1/(2*LambertW(1/exp(1))) * sqrt((1+LambertW(1/exp(1)))/(2*Pi)) = 0.8099431005... - Vaclav Kotesovec, Dec 22 2011, updated Sep 25 2012

Extensions

More terms from Alois P. Heinz, Aug 14 2008
Minor edits by Vaclav Kotesovec, Mar 31 2014

A191236 Number of ways to place n nonattacking bishops on black squares of a 2n X 2n board.

Original entry on oeis.org

1, 2, 14, 184, 3532, 89256, 2800016, 104967808, 4578528464, 227816059360, 12735645181536, 790296855912576, 53905019035510528, 4008716449677965312, 322807879692969879552, 27983800239966141382656
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[(1/n!)*Sum[(-1)^(n - k)*Binomial[n, k]*(k*(k + 1))^n, {k, 0, n}], {n,1,50}]] (* G. C. Greubel, Feb 03 2017 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*(m+1)^m*x^m*exp(-m*(m+1)*x+x*O(x^n))/m!),n)} \\ Paul D. Hanna, Oct 15 2012
    
  • PARI
    {a(n)=sum(k=0,n, binomial(n,k) * stirling(2*n-k,n,2))} \\ Paul D. Hanna, Nov 13 2012

Formula

a(n) = 1/n! * Sum_{j=0..n} (-1)^(n-j) * binomial(n,j) * (j*(j+1))^n.
Asymptotic: a(n) ~ 1/sqrt(Pi*(z-1)*(2-z)*n)*(2*n*exp(z-1)/z)^n or a(n) ~ exp(z/2)*Stirling2(2*n,n) where z = A256500 = 1.59362426... is a root of the equation exp(z)*(2-z)=2.
O.g.f.: Sum_{n>=0} n^n*(n+1)^n * exp(-n*(n+1)*x) * x^n/n! = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Oct 15 2012
a(n) = Sum_{k=0..n} binomial(n,k) * Stirling2(2*n-k,n), where Stirling2(n,k) = A008277(n,k). - Paul D. Hanna, Nov 13 2012

Extensions

Offset changed to 0 and a(0)=1 added by Paul D. Hanna, Nov 13 2012
Showing 1-10 of 22 results. Next