cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A072034 a(n) = Sum_{k=0..n} binomial(n,k)*k^n.

Original entry on oeis.org

1, 1, 6, 54, 680, 11000, 217392, 5076400, 136761984, 4175432064, 142469423360, 5372711277824, 221903307604992, 9961821300640768, 482982946946734080, 25150966159083264000, 1400031335107317628928, 82960293298087664648192
Offset: 0

Views

Author

Karol A. Penson, Jun 07 2002

Keywords

Comments

The number of functions from {1,2,...,n} into a subset of {1,2,...,n} summed over all subsets. - Geoffrey Critzer, Sep 16 2012

Crossrefs

Programs

  • Maple
    seq(add(binomial(n,k)*k^n,k=0..n),n=0..17); # Peter Luschny, Jun 09 2015
  • Mathematica
    Table[Sum[Binomial[n,k]k^n,{k,0,n}],{n,1,20}] (* Geoffrey Critzer, Sep 16 2012 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 10 2017
    
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*k^n); \\ Michel Marcus, Nov 10 2017

Formula

E.g.f.: 1/(1+LambertW(-x*exp(x))). - Vladeta Jovovic, Mar 29 2008
a(n) ~ (n/(e*LambertW(1/e)))^n/sqrt(1+LambertW(1/e)). - Vaclav Kotesovec, Nov 26 2012
O.g.f.: Sum_{n>=0} n^n * x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018

Extensions

Offset set to 0 and a(0) = 1 prepended by Peter Luschny, Jun 09 2015
E.g.f. edited to include a(0)=1 by Robert Israel, Jun 09 2015

A007889 Number of intransitive (or alternating, or Stanley) trees: vertices are [0,n] and for no i

Original entry on oeis.org

1, 1, 2, 7, 36, 246, 2104, 21652, 260720, 3598120, 56010096, 971055240, 18558391936, 387665694976, 8787898861568, 214868401724416, 5636819806209792, 157935254554567296, 4707152127520549120, 148704074888134683520, 4963548160096887021056, 174553183413968718996736
Offset: 0

Views

Author

Alexander Postnikov [ apost(AT)math.mit.edu ]

Keywords

Comments

Number of local binary search trees (i.e. labeled binary trees such that every left child has a smaller label than its parent and every right child has a larger label than its parent) on n vertices. Example: a(3)=7 because we have 3L2L1, 2L1R3, 3L1R2, 1R2R3, 1R3L2, 2R3L1 (Li means left child labeled i, RI means right child labeled i) and root 2 with left child 1 and right child 3. - Emeric Deutsch, Nov 24 2004
Number of regions of the Linial arrangement. - Ira M. Gessel, Nov 01 2023

References

  • I. M. Gelfand, M. I. Graev and A. Postnikov, Combinatorics of hypergeometric functions associated with positive roots, in Arnold-Gelfand Mathematical Seminars: Geometry and Singularity Theory, Birkhäuser, 1997.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.41(a).

Crossrefs

Row sums of A029847.

Programs

  • Maple
    f:= n->1/(2^n*(n+1))*add(binomial(n+1, k)*k^n, k=1..(n+1)): seq(f(n), n=0..19);
  • Mathematica
    With[{nn=20},CoefficientList[Series[-2/x LambertW[-1/2x Exp[x/2]], {x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Aug 12 2011 *)
    Table[1/((n+1)2^n) Sum[Binomial[n+1,k]k^n,{k,n+1}],{n,0,20}] (* Harvey P. Dale, Apr 21 2012 *)
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=exp(x*(1+A)/2 +x*O(x^n)));n!*polcoeff(A,n)} \\ Paul D. Hanna, Mar 29 2008
    
  • PARI
    /* Coefficients of A(x)^p are given by: */ {a(n,p=1)=(1/2^n)*sum(k=0,n,binomial(n,k)*p*(k+p)^(n-1))} \\ Vladeta Jovovic and Paul D. Hanna, Apr 03 2008
    
  • Sage
    def A007889(n) : return add(binomial(n,k)*(k+1)^(n-1) for k in (0..n))/2^n
    for n in (0..19) : print(A007889(n)) # Peter Luschny, Feb 29 2012

Formula

a(n) = (1/((n+1)*2^n))*Sum_{k=1..n+1} C(n+1,k)*k^n.
E.g.f. A(x) satisfies: A(x) = exp( x*(1 + A(x))/2 ). E.g.f. A(x) equals the inverse function of 2*log(x)/(1+x). - Paul D. Hanna, Mar 29 2008
E.g.f.: -2/x*LambertW(-1/2*x*exp(1/2*x)). - Vladeta Jovovic, Mar 29 2008
From Vladeta Jovovic and Paul D. Hanna, Apr 03 2008: (Start)
Powers of e.g.f.: If A(x)^p = Sum_{n>=0} a(n,p)*x^n/n! then a(n,p) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*p*(k+p)^(n-1).
Let A(x) = e.g.f. of A007889, B(x) = e.g.f. of A138860 where B(x) = exp( x*[B(x) + B(x)^2]/2 ); then B(x) = A(x*B(x)) = (1/x)*Series_Reversion(x/A(x)) and A(x) = B(x/A(x)) = x/Series_Reversion(x*B(x)). (End)
For n>=2, a(n)=Sum_{1,...,floor(n/2)}binomial(n-1, 2k-1)*k^(n-2). [Vladimir Shevelev, Mar 21 2010]
For n>0, a(n) = A088789(n+1)*2/(n+1). [Vaclav Kotesovec, Dec 26 2011]

A038049 Number of labeled rooted trees with 2-colored leaves.

Original entry on oeis.org

2, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.83)

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n, k)*(n-k)^(n-1), k=0..n):
    seq(a(n), n=1..20);  # Alois P. Heinz, Nov 30 2012
  • Mathematica
    Table[n!*Sum[2^j/j!*StirlingS2[n-1,n-j],{j,1,n}],{n,1,20}] (* Vaclav Kotesovec, Nov 30 2012 *)

Formula

Divides by n and shifts left under exponential transform.
E.g.f.: A(x) = x-LambertW(-x*exp(x)). - Vladeta Jovovic, Mar 08 2003
a(n) = Sum_{k=0..n} (binomial(n, k)*(n-k)^(n-1)).
A(x) = 2*compositional inverse of 2*x/(1+exp(2*x)). - Peter Bala, Oct 14 2011
a(n) ~ n^(n-1) * sqrt((1+LambertW(1/e))) / (e*LambertW(1/e))^n. - Vaclav Kotesovec, Nov 30 2012

A138860 E.g.f. satisfies: A(x) = exp( x*(A(x) + A(x)^2)/2 ).

Original entry on oeis.org

1, 1, 4, 31, 364, 5766, 115300, 2788724, 79197040, 2583928360, 95256535936, 3916137470664, 177651980724160, 8815348234689920, 474993826614917632, 27619367979975064576, 1723821221240101984000, 114948301218300412117632
Offset: 0

Views

Author

Paul D. Hanna, Apr 01 2008, Apr 02 2008, Apr 03 2008

Keywords

Comments

The related sequence A007889 enumerates the number of intransitive (or alternating) trees.
a(n+1) is the number of incomplete ternary trees on n labeled vertices in which each left child has a larger label than its parent and each middle child has a smaller label than its parent. - Brian Drake, Jul 28 2008

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 31*x^3/3! + 364*x^4/4! + 5766*x^5/5! + ...
		

Crossrefs

Programs

  • Mathematica
    Table[1/2^n * Sum[Binomial[n,k]*(n+k+1)^(n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 15 2013 *)
  • PARI
    a(n)=(1/2^n)*sum(k=0,n,binomial(n,k)*(n+k+1)^(n-1))
    
  • PARI
    /* Series Reversion: */
    a(n)=local(X=x+x*O(x^n));n!*polcoeff(exp(serreverse(2*x/(exp(X)+exp(2*X)) )),n)
    
  • PARI
    /* Coefficients of A(x)^p are given by: */
    {a(n,p=1)=(1/2^n)*sum(k=0,n,binomial(n,k)*p*(n+k+p)^(n-1))}

Formula

a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+k+1)^(n-1) - Vladeta Jovovic, Mar 31 2008.
E.g.f. satisfies: A( 2*x/( exp(x) + exp(2*x) ) ) = exp(x).
E.g.f.: A(x) = inverse function of 2*log(x)/(x + x^2).
E.g.f.: A(x) = exp( Series_Reversion[ 2*x/(exp(x) + exp(2*x)) ] ).
E.g.f.: A(x) = G(x/2) where G(x) = e.g.f. of A138764.
More generally, if A(x) = Sum_{n>=0} a(n)*x^n/n! = exp( x*[A(x) + A(x)^m]/2 ) then a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+(m-1)*k+1)^(n-1) and if B(x) = Sum_{n>=0} b(n)*x^n/n! = log(A(x)) then b(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+(m-1)*k)^(n-1). - Paul D. Hanna and Vladeta Jovovic, Apr 02 2008
Powers of e.g.f.: If A(x)^p = Sum_{n>=0} a(n,p)*x^n/n! then
. a(n,p) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*p*(n+k+p)^(n-1).
Given e.g.f. A(x), let B(x) = e.g.f. of A007889, then
. A(x) = B(x*A(x)) = (1/x)*Series_Reversion(x/B(x)) and
. B(x) = A(x/B(x)) = x/Series_Reversion(x*A(x)).
a(n) ~ n^(n-1)*(1+r)^n*r^(n+1)/(sqrt(1+3*r)*(1-r)^(2*n+1)*exp(n)*2^n), where r = 0.6472709258412625... is the root of the equation (r/(1-r))^(1+r) = e. - Vaclav Kotesovec, Jun 15 2013

A378561 Number of ways to place k nonattacking anassas on an n X n chess board. Triangle T(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 9, 22, 14, 1, 16, 82, 156, 90, 1, 25, 220, 840, 1366, 738, 1, 36, 485, 3100, 9796, 14288, 7364, 1, 49, 938, 9030, 46816, 129360, 174112, 86608, 1, 64, 1652, 22344, 172116, 767424, 1916776, 2424880, 1173240, 1, 81, 2712, 49056, 525756, 3442740, 13682320, 31572720, 38019496, 17990600
Offset: 0

Views

Author

Eder G. Santos, Nov 30 2024

Keywords

Comments

Anassas (also called semi-rook+semi-bishop) are chess pieces with 2 moves: one horizontal or vertical and one diagonal.

Examples

			Triangle begins:
  1;
  1  1;
  1  4   3;
  1  9  22   14;
  1 16  82  156   90;
  1 25 220  840 1366   738;
  1 36 485 3100 9796 14288 7364;
  ...
		

Crossrefs

Columns k=0-1 give: A000012, A000290.
Main diagonal gives A088789(n+1).

Programs

  • SageMath
    print([sum([factorial(j)*binomial(n-k+j,j)*stirling_number2(n,n-k+j)*2^(k-2*j)*(binomial(k-j,j-1)+binomial(k-j+1,j)) for j in [0..ceil(k/2)]]) for n in [0..10] for k in [0..n]])

Formula

T(n,k) = Sum_{j=0..ceiling(k/2)} j! * binomial(n-k+j,j) * Stirling2(n,n-k+j) * 2^(k-2*j) * (binomial(k-j,j-1) + binomial(k-j+1,j)).

A185056 Number of ways to place n nonattacking composite pieces bishop + semi-rook on an n X n board.

Original entry on oeis.org

1, 2, 5, 24, 125, 796, 5635, 48042, 453947, 4834872, 56433455, 727449366, 10099103269, 152097526360, 2449915208271, 42295879864692
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 22 2011

Keywords

Comments

Two semi-rooks do not attack each other if they are in the same column.

Crossrefs

Showing 1-6 of 6 results.