cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A007889 Number of intransitive (or alternating, or Stanley) trees: vertices are [0,n] and for no i

Original entry on oeis.org

1, 1, 2, 7, 36, 246, 2104, 21652, 260720, 3598120, 56010096, 971055240, 18558391936, 387665694976, 8787898861568, 214868401724416, 5636819806209792, 157935254554567296, 4707152127520549120, 148704074888134683520, 4963548160096887021056, 174553183413968718996736
Offset: 0

Views

Author

Alexander Postnikov [ apost(AT)math.mit.edu ]

Keywords

Comments

Number of local binary search trees (i.e. labeled binary trees such that every left child has a smaller label than its parent and every right child has a larger label than its parent) on n vertices. Example: a(3)=7 because we have 3L2L1, 2L1R3, 3L1R2, 1R2R3, 1R3L2, 2R3L1 (Li means left child labeled i, RI means right child labeled i) and root 2 with left child 1 and right child 3. - Emeric Deutsch, Nov 24 2004
Number of regions of the Linial arrangement. - Ira M. Gessel, Nov 01 2023

References

  • I. M. Gelfand, M. I. Graev and A. Postnikov, Combinatorics of hypergeometric functions associated with positive roots, in Arnold-Gelfand Mathematical Seminars: Geometry and Singularity Theory, Birkhäuser, 1997.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.41(a).

Crossrefs

Row sums of A029847.

Programs

  • Maple
    f:= n->1/(2^n*(n+1))*add(binomial(n+1, k)*k^n, k=1..(n+1)): seq(f(n), n=0..19);
  • Mathematica
    With[{nn=20},CoefficientList[Series[-2/x LambertW[-1/2x Exp[x/2]], {x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Aug 12 2011 *)
    Table[1/((n+1)2^n) Sum[Binomial[n+1,k]k^n,{k,n+1}],{n,0,20}] (* Harvey P. Dale, Apr 21 2012 *)
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=exp(x*(1+A)/2 +x*O(x^n)));n!*polcoeff(A,n)} \\ Paul D. Hanna, Mar 29 2008
    
  • PARI
    /* Coefficients of A(x)^p are given by: */ {a(n,p=1)=(1/2^n)*sum(k=0,n,binomial(n,k)*p*(k+p)^(n-1))} \\ Vladeta Jovovic and Paul D. Hanna, Apr 03 2008
    
  • Sage
    def A007889(n) : return add(binomial(n,k)*(k+1)^(n-1) for k in (0..n))/2^n
    for n in (0..19) : print(A007889(n)) # Peter Luschny, Feb 29 2012

Formula

a(n) = (1/((n+1)*2^n))*Sum_{k=1..n+1} C(n+1,k)*k^n.
E.g.f. A(x) satisfies: A(x) = exp( x*(1 + A(x))/2 ). E.g.f. A(x) equals the inverse function of 2*log(x)/(1+x). - Paul D. Hanna, Mar 29 2008
E.g.f.: -2/x*LambertW(-1/2*x*exp(1/2*x)). - Vladeta Jovovic, Mar 29 2008
From Vladeta Jovovic and Paul D. Hanna, Apr 03 2008: (Start)
Powers of e.g.f.: If A(x)^p = Sum_{n>=0} a(n,p)*x^n/n! then a(n,p) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*p*(k+p)^(n-1).
Let A(x) = e.g.f. of A007889, B(x) = e.g.f. of A138860 where B(x) = exp( x*[B(x) + B(x)^2]/2 ); then B(x) = A(x*B(x)) = (1/x)*Series_Reversion(x/A(x)) and A(x) = B(x/A(x)) = x/Series_Reversion(x*B(x)). (End)
For n>=2, a(n)=Sum_{1,...,floor(n/2)}binomial(n-1, 2k-1)*k^(n-2). [Vladimir Shevelev, Mar 21 2010]
For n>0, a(n) = A088789(n+1)*2/(n+1). [Vaclav Kotesovec, Dec 26 2011]

A216857 Number of connected functions from {1,2,...,n} into a subset of {1,2,...,n} that have a fixed point summed over all subsets.

Original entry on oeis.org

0, 1, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320, 1559275240299007139066675200
Offset: 0

Views

Author

Geoffrey Critzer, Sep 17 2012

Keywords

Comments

Essentially the same as A038049.
Also the number of rooted trees whose nodes are labeled with the blocks of a set partition of {1,2,...,n} each having a distinguished element. (See A000248.)
The bijection is straightforward. The trees correspond to functional digraphs mapping the distinguished elements towards the root. All the elements within each block are mapped to the distinguished element of that block. The distinguished element in the root node is the fixed point.

Crossrefs

Programs

  • Mathematica
    With[{nmax = 20}, CoefficientList[Series[-LambertW[-x*Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* modified by G. C. Greubel, Nov 15 2017 *)
  • PARI
    for(n=0,30, print1(sum(k=1,n, binomial(n,k)*k^(n-1)), ", ")) \\ G. C. Greubel, Nov 15 2017
    
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(serlaplace(-lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 15 2017

Formula

E.g.f.: T(x*exp(x)) where T(x) is the e.g.f. for A000169.
a(n) = Sum_{k=1..n} binomial(n,k)*k^(n-1).
a(n) ~ sqrt(1+LambertW(exp(-1))) * n^(n-1) / (exp(n)*LambertW(exp(-1))^n). - Vaclav Kotesovec, Jul 09 2013
O.g.f.: Sum_{n>=0} n^(n-1)* x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018
E.g.f.: the compositional inverse of A(x) is -A(-x). - Alexander Burstein, Aug 11 2018

A349562 Number of labeled rooted forests with 2-colored leaves.

Original entry on oeis.org

1, 2, 8, 56, 576, 7872, 134656, 2771456, 66744320, 1842237440, 57354338304, 1988721131520, 76015173369856, 3175757373243392, 143980934947930112, 7040807787705663488, 369414622819764928512, 20700889684976244621312, 1233951687316746828513280, 77963762014950356953333760
Offset: 0

Views

Author

Alexander Burstein, Nov 22 2021

Keywords

Comments

a(n) is the number of labeled trees on vertices 0,1,...,n rooted at 0, where all leaves have 2 colors (except the singleton tree 0 has only 1 color).

Examples

			a(2)=8 counts trees 0-1-2B, 0-1-2R, 0-2-1B, 0-2-1R, 1B-0-2B, 1B-0-2R, 1R-0-2B, 1R-0-2R (where B and R stand for colors Blue and Red).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[u/.AsymptoticSolve[u-E^(x(1+u))==0,u->1,{x,0,24}][[1]],x]Factorial/@Range[0,24]
    nmax = 20; CoefficientList[Series[-LambertW[-x*Exp[x]]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 25 2021 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k+1)^(k-1)*x^k/(1-(k+1)*x)^(k+1))) \\ Seiichi Manyama, Nov 26 2021

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*(k+1)^(n-1).
a(n) = A216857(n+1)/(n+1).
a(n) = A038049(n+1)/(n+1) for n>=1, and a(0) = A038049(1)/2.
a(n) = 2*A201595(n) - A000007(n).
E.g.f. satisfies: A(x) = e^(x*(1 + A(x))).
E.g.f. satisfies: A(-x*A(x)) = 1/A(x).
From Vaclav Kotesovec, Nov 25 2021: (Start)
E.g.f.: -LambertW(-x*exp(x))/x.
a(n) ~ sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (exp(n) * LambertW(exp(-1))^(n+1)).
(End)
From Seiichi Manyama, Nov 26 2021: (Start)
G.f.: Sum_{k>=0} (k+1)^(k-1) * x^k/(1 - (k+1)*x)^(k+1).
a(n) = 2^n * A007889(n). (End)

A029856 Number of rooted trees with 2-colored leaves.

Original entry on oeis.org

2, 2, 5, 13, 37, 108, 332, 1042, 3360, 11019, 36722, 123875, 422449, 1453553, 5040816, 17599468, 61814275, 218252584, 774226549, 2758043727, 9862357697, 35387662266, 127374191687, 459783039109, 1664042970924, 6037070913558, 21951214425140, 79981665585029
Offset: 1

Views

Author

Keywords

Crossrefs

Essentially the same as A036249.

Programs

  • Maple
    A:= proc(n) option remember; if n=0 then 0 else convert(series(x+x* exp(sum(subs(x=x^i, A(n-1))/i, i=1..n-1)), x=0, n+1), polynom) fi end; a:= n-> coeff(A(n), x,n): seq(a(n), n=1..25); # Alois P. Heinz, Aug 22 2008
    # second Maple program:
    with(numtheory): a:= proc(n) option remember; local d,j; if n<=1 then 2*n else (add(d*a(d), d=divisors(n-1)) +add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-2))/ (n-1) fi end: seq(a(n), n=1..25); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    a[n_] := a[n] = If [n <= 1, 2*n, (Sum[d*a[d], {d, Divisors[n-1]}] + Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-2}])/(n-1)]; Array[a, 25] (* Jean-François Alcover, Mar 13 2015, after Alois P. Heinz *)
  • PARI
    {a(n)=local(A=x+x*O(x^n));for(i=1,n, A=x+x*exp(sum(m=1,n,subst(A,x,x^m)/m)));polcoeff(A,n,x)} \\ Paul D. Hanna, Oct 19 2005

Formula

Shifts left under Euler transform.
G.f. satisfies: A(x) = x + x*exp( Sum_{n>=1} A(x^n)/n ). - Paul D. Hanna, Oct 19 2005
a(n) ~ c * d^n / n^(3/2), where d = 3.848442876944251389076286931217197... and c = 0.48335853985605895591573724406549734... - Vaclav Kotesovec, Mar 29 2014

A088789 E.g.f.: REVERT(2*x/(1+exp(x))) = Sum_{n>=0} a(n)*x^n/n!.

Original entry on oeis.org

0, 1, 1, 3, 14, 90, 738, 7364, 86608, 1173240, 17990600, 308055528, 5826331440, 120629547584, 2713659864832, 65909241461760, 1718947213795328, 47912968352783232, 1421417290991105664, 44717945211445216640, 1487040748881346835200, 52117255681017313721088
Offset: 0

Views

Author

Paul D. Hanna, Oct 15 2003

Keywords

Comments

a(n+1) is also number of ways to place n nonattacking composite pieces semi-rook + semi-bishop on an n X n board. Two semi-bishops (see A187235) do not attack each other if they are in the same northwest-southeast diagonal. Two semi-rooks do not attack each other if they are in the same column (see also semi-queens, A099152). - Vaclav Kotesovec, Dec 22 2011

Crossrefs

Main diagonal of A378561 (shifted).

Programs

  • Maple
    a:= n->coeff(series(x/2-LambertW(-1/2*x*exp(1/2*x)), x=0, n+1), x, n)*n!:
    seq(a(n), n=0..30); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    Table[n!/2^n*Sum[2^j/j!*StirlingS2[n-1,n-j],{j,1,n}],{n,1,50}] (* Vaclav Kotesovec, Dec 25 2011 *)
    With[{nmax = 50}, CoefficientList[Series[x/2 - LambertW[-x*Exp[x/2]/2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 14 2017 *)
  • PARI
    a(n)=local(A); if(n<0,0,A=x+O(x^n);n!*polcoeff(serreverse(2*x/(1 + exp(x))), n))
    
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(x/2 - lambertw(-x*exp(x/2)/2)))) \\ G. C. Greubel, Nov 14 2017

Formula

E.g.f.: x/2 - LambertW(-x*exp(x/2)/2). - Vladeta Jovovic, Feb 12 2008
a(n) = (1/2^n)*Sum_{k=1..n} binomial(n,k)*k^(n-1) = A038049(n)/2^n, n>1. - Vladeta Jovovic, Feb 12 2008
Asymptotics: a(n)/(n-2)! ~ b * q^(n-1) * sqrt(n), where q = 1/(2*LambertW(1/exp(1))) = 1.795560738334311... is the root of the equation 2*q = exp(1+1/(2*q)) and b = 1/(2*LambertW(1/exp(1))) * sqrt((1+LambertW(1/exp(1)))/(2*Pi)) = 0.8099431005... - Vaclav Kotesovec, Dec 22 2011, updated Sep 25 2012

Extensions

More terms from Alois P. Heinz, Aug 14 2008
Minor edits by Vaclav Kotesovec, Mar 31 2014

A214225 E.g.f. satisfies: A(x) = x/(1 - tanh(A(x))).

Original entry on oeis.org

1, 2, 12, 112, 1440, 23616, 471296, 11085824, 300349440, 9211187200, 315448860672, 11932326789120, 494098626904064, 22230301612703744, 1079857012109475840, 56326462301645307904, 3140024293968001892352, 186308007164786201591808, 11722541029509094870876160
Offset: 1

Views

Author

Paul D. Hanna, Jul 07 2012

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 112*x^4/4! + 1440*x^5/5! +...
Related expansions:
A(x) = x + x*tanh(x) + d/dx x^2*tanh(x)^2/2! + d^2/dx^2 x^3*tanh(x)^3/3! + d^3/dx^3 x^4*tanh(x)^4/4! +...
log(A(x)/x) = tanh(x) + d/dx x*tanh(x)^2/2! + d^2/dx^2 x^2*tanh(x)^3/3! + d^3/dx^3 x^3*tanh(x)^4/4! +...
A(x)/x = 1 + x + 4*x^2/2! + 28*x^3/3! + 288*x^4/4! + 3936*x^5/5! + 67328*x^6/6! +...+ A201595(n)*x^n/n! +...
tanh(A(x)) = x + 2*x^2/2! + 10*x^3/3! + 88*x^4/4! + 1096*x^5/5! + 17616*x^6/6! + 346704*x^7/7! + 8072576*x^8/8! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x-x*Tanh[x],{x,0,20}],x],x]*Range[0,20]!] (* Vaclav Kotesovec, Sep 17 2013 *)
    Flatten[{1,Table[1/2*Sum[Binomial[n,k]*k^(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Sep 17 2013 *)
  • PARI
    {a(n)=(1/2)*sum(k=0,n,binomial(n,k)*k^(n-1))}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=(n-1)!*polcoeff(x/(1 - tanh(x+x*O(x^n)))^n,n)}
    
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-x*tanh(x+x*O(x^n))), n)}
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=1, n, k^(k-1)*cosh(k*x +x*O(x^n))*x^k/k! +x*O(x^n)), n)} \\ Paul D. Hanna, Nov 20 2012
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^m*tanh(x+x*O(x^n))^m/m!)); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*tanh(x+x*O(x^n))^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}

Formula

E.g.f. A(x) satisfies:
(1) A(x - x*tanh(x)) = x.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*tanh(x)^n/n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*tanh(x)^n/n! ).
(4) A(x) = Sum_{n>=1} n^(n-1) * cosh(n*x) * x^n / n!. - Paul D. Hanna, Nov 20 2012
(5) A(x) = log(G(x)) where G(x) = exp(x*(1+G(x)^2)/2) is the e.g.f. of A202617. - Paul D. Hanna, Nov 20 2012
a(n) = n*A201595(n-1).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*k^(n-1).
a(n) = (n-1)! * [x^n] x/(1 - tanh(x))^n.
a(n) = A038049(n)/2. - R. J. Mathar, Peter Bala, Mar 24 2013
a(n) ~ 1/2 * n^(n-1) * sqrt((1+LambertW(1/exp(1)))) / (exp(1)*LambertW(1/exp(1)))^n. - Vaclav Kotesovec, Sep 17 2013

A100526 Number of local binary search trees (i.e., labeled binary trees such that every left child has a smaller label than its parent and every right child has a larger label than its parent) with n vertices such that the root has only one child.

Original entry on oeis.org

1, 2, 6, 28, 180, 1476, 14728, 173216, 2346480, 35981200, 616111056, 11652662880, 241259095168, 5427319729664, 131818482923520, 3437894427590656, 95825936705566464, 2842834581982211328, 89435890422890433280, 2974081497762693670400, 104234511362034627442176
Offset: 1

Views

Author

Emeric Deutsch, Nov 24 2004

Keywords

Examples

			a(3)=6 because we have 3L2L1, 2L1R3, 3L1R2, 1R2R3, 1R3L2, 2R3L1 (Li means left child labeled i, RI means right child labeled i).
E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1476*x^6/6! +...
Given G(x) such that G( sqrt( G(x^2*exp(-x)) ) ) = x, where
G(x) = x + 1/2*x^2 + 1/8*x^3 + 1/12*x^4 + 77/384*x^5 + 23/120*x^6 + 2077/46080*x^7 + 179/5040*x^8 + 239525/2064384*x^9 +...+ A273952(n)*x^n/(2^(n-1)*(n-1)!) +...
then A(x) = G( sqrt( G(x^2*exp(x)) ) ). - _Paul D. Hanna_, Jun 06 2016
		

Crossrefs

Programs

  • Magma
    [2^(1-n)*(&+[ k^(n-1)*Binomial(n, k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Mar 27 2023
    
  • Maple
    seq((1/2^(n-1))*add(k^(n-1)*binomial(n,k),k=1..n),n=1..22);
  • Mathematica
    Rest[CoefficientList[Series[-2*LambertW[-x*E^(x/2)/2], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 23 2016 *)
  • PARI
    /* Egf A(x) = G(sqrt(G(x^2*exp(x)))) if G(sqrt(G(x^2*exp(-x)))) = x */
    {a(n) = my(G=x); for(i=1,n, G = serreverse( sqrt( subst(G,x, x^2*exp(-x +O(x^n))) ) )); A = subst(G,x,sqrt(subst(G,x,x^2*exp(x +O(x^n))))); n!*polcoeff(A,n)}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jun 06 2016
    
  • SageMath
    def A100526(n): return 2^(1-n)*sum( k^(n-1)*binomial(n, k) for k in range(1,n+1) )
    [A100526(n) for n in range(1,40)] # G. C. Greubel, Mar 27 2023

Formula

a(n) = (1/2^(n-1))*Sum_{k=1..n} k^(n-1)*binomial(n, k).
a(n) = n*A007889(n-1).
E.g.f.: -2*LambertW(-x*exp(x/2)/2). - Paul D. Hanna, Jun 07 2016, after Vladeta Jovovic's formula in A038049
E.g.f.: G( sqrt( G(x^2*exp(x)) ) ), where G( sqrt( G(x^2*exp(-x)) ) ) = x, and G(x) is the e.g.f. of A273952. - Paul D. Hanna, Jun 06 2016
a(n) ~ sqrt(1 + LambertW(exp(-1)))*n^(n-1) / (2^(n-1) * exp(n) * LambertW(exp(-1))^n). - Vaclav Kotesovec, Jun 23 2016

A038050 Number of labeled rooted trees with 3-colored leaves.

Original entry on oeis.org

3, 6, 45, 504, 7785, 153468, 3681909, 104126256, 3392064945, 125089571700, 5151335388309, 234322765501608, 11668410187187481, 631335472193760012, 36881146426978035765, 2313552152470193124192, 155107536736245864549345
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.83)

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[2*x-LambertW[-x*E^(2*x)], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 05 2013 *)

Formula

Divides by n and shifts left under exponential transform.
E.g.f.: 2*x - LambertW(-x*exp(2*x)). - Vladeta Jovovic, Mar 09 2003
a(n) = Sum_{k=0..n} (binomial(n, k)*2^k*(n-k)^(n-1)).
a(n) ~ sqrt(1+LambertW(2*exp(-1))) * (2*exp(-1)/LambertW(2*exp(-1)))^n * n^(n-1). - Vaclav Kotesovec, Oct 05 2013

A038053 Number of labeled planted trees with 2-colored leaves.

Original entry on oeis.org

0, 4, 12, 96, 1120, 17280, 330624, 7540736, 199544832, 6006988800, 202646118400, 7570772656128, 310240496517120, 13834761553313792, 666909048381112320, 34555424387503226880, 1915099718255940468736
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(2+LambertW[-x*E^x])*(x-LambertW[-x*E^x])/(1+ LambertW[-x*E^x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 29 2014 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(serlaplace( (2+lambertw(-x*exp(x))) *(x-lambertw(-x*exp(x)))/(1+lambertw(-x*exp(x))) ))) \\ G. C. Greubel, Sep 09 2018

Formula

A038049 shifted right and multiplied by n.
E.g.f. (for offset 0): (2+B(x))*(x-B(x))/(1+B(x)) where B(x) = LambertW(-x*exp(x)). - Vladeta Jovovic, Mar 08 2003
a(n) ~ sqrt(LambertW(exp(-1))+1) * n^(n-1) / (exp(n) * (LambertW(exp(-1)))^(n-1)). - Vaclav Kotesovec, Mar 29 2014

A360548 E.g.f. satisfies A(x) = x * exp( 2*(x + A(x)) ).

Original entry on oeis.org

0, 1, 8, 96, 1792, 46080, 1511424, 60325888, 2837970944, 153778913280, 9432255692800, 646039266656256, 48874810528235520, 4047655951598092288, 364221261622538141696, 35384754572803304325120, 3691411033400626898796544, 411569264258973944034361344
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2023

Keywords

Crossrefs

Programs

  • Maple
    A360548 := proc(n)
        add((2*k)^(n-1)*binomial(n,k),k=1..n) ;
    end proc:
    seq(A360548(n),n=0..60) ; # R. J. Mathar, Mar 12 2023
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-2*x*exp(2*x))/2)))
    
  • PARI
    a(n) = sum(k=1, n, (2*k)^(n-1)*binomial(n, k));

Formula

E.g.f.: A(x) = (-1/2) * LambertW(-2*x * exp(2*x)).
a(n) = Sum_{k=1..n} (2*k)^(n-1) * binomial(n,k) = 4^(n-1) * A100526(n).
a(n) ~ sqrt(1 + LambertW(exp(-1))) * 2^(n-1) * n^(n-1) / (LambertW(exp(-1))^n * exp(n)). - Vaclav Kotesovec, Feb 17 2023
Showing 1-10 of 13 results. Next