A007889
Number of intransitive (or alternating, or Stanley) trees: vertices are [0,n] and for no i
Original entry on oeis.org
1, 1, 2, 7, 36, 246, 2104, 21652, 260720, 3598120, 56010096, 971055240, 18558391936, 387665694976, 8787898861568, 214868401724416, 5636819806209792, 157935254554567296, 4707152127520549120, 148704074888134683520, 4963548160096887021056, 174553183413968718996736
Offset: 0
Alexander Postnikov [ apost(AT)math.mit.edu ]
- I. M. Gelfand, M. I. Graev and A. Postnikov, Combinatorics of hypergeometric functions associated with positive roots, in Arnold-Gelfand Mathematical Seminars: Geometry and Singularity Theory, Birkhäuser, 1997.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.41(a).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- C. Chauve, S. Dulucq and A. Rechnitzer, Enumerating alternating trees, J. Combin. Theory Ser. A 94 (2001), 142-151.
- Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, arXiv:0906.3828, 2009-2010. [_N. J. A. Sloane_, Sep 27 2010]
- G. Hetyei, Efron's coins and the Linial arrangement, arXiv preprint arXiv:1511.04482 [math.CO], 2015.
- D. E. Knuth, Letter to Daniel Ullman and others, Apr 29 1997 [Annotated scanned copy, with permission]
- A. Postnikov, Intransitive Trees, J. Combin. Theory Ser. A 79 (1997), 360-366.
- Richard P. Stanley, Hyperplane arrangements, interval orders, and trees, Proc. Natl. Acad. Sci. USA 93 (1996), 2620-2625.
- Index entries for sequences related to trees
-
f:= n->1/(2^n*(n+1))*add(binomial(n+1, k)*k^n, k=1..(n+1)): seq(f(n), n=0..19);
-
With[{nn=20},CoefficientList[Series[-2/x LambertW[-1/2x Exp[x/2]], {x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Aug 12 2011 *)
Table[1/((n+1)2^n) Sum[Binomial[n+1,k]k^n,{k,n+1}],{n,0,20}] (* Harvey P. Dale, Apr 21 2012 *)
-
{a(n)=local(A=1+x);for(i=0,n,A=exp(x*(1+A)/2 +x*O(x^n)));n!*polcoeff(A,n)} \\ Paul D. Hanna, Mar 29 2008
-
/* Coefficients of A(x)^p are given by: */ {a(n,p=1)=(1/2^n)*sum(k=0,n,binomial(n,k)*p*(k+p)^(n-1))} \\ Vladeta Jovovic and Paul D. Hanna, Apr 03 2008
-
def A007889(n) : return add(binomial(n,k)*(k+1)^(n-1) for k in (0..n))/2^n
for n in (0..19) : print(A007889(n)) # Peter Luschny, Feb 29 2012
A216857
Number of connected functions from {1,2,...,n} into a subset of {1,2,...,n} that have a fixed point summed over all subsets.
Original entry on oeis.org
0, 1, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320, 1559275240299007139066675200
Offset: 0
-
With[{nmax = 20}, CoefficientList[Series[-LambertW[-x*Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* modified by G. C. Greubel, Nov 15 2017 *)
-
for(n=0,30, print1(sum(k=1,n, binomial(n,k)*k^(n-1)), ", ")) \\ G. C. Greubel, Nov 15 2017
-
my(x='x+O('x^50)); concat([0], Vec(serlaplace(-lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 15 2017
A349562
Number of labeled rooted forests with 2-colored leaves.
Original entry on oeis.org
1, 2, 8, 56, 576, 7872, 134656, 2771456, 66744320, 1842237440, 57354338304, 1988721131520, 76015173369856, 3175757373243392, 143980934947930112, 7040807787705663488, 369414622819764928512, 20700889684976244621312, 1233951687316746828513280, 77963762014950356953333760
Offset: 0
a(2)=8 counts trees 0-1-2B, 0-1-2R, 0-2-1B, 0-2-1R, 1B-0-2B, 1B-0-2R, 1R-0-2B, 1R-0-2R (where B and R stand for colors Blue and Red).
-
CoefficientList[u/.AsymptoticSolve[u-E^(x(1+u))==0,u->1,{x,0,24}][[1]],x]Factorial/@Range[0,24]
nmax = 20; CoefficientList[Series[-LambertW[-x*Exp[x]]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 25 2021 *)
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k+1)^(k-1)*x^k/(1-(k+1)*x)^(k+1))) \\ Seiichi Manyama, Nov 26 2021
A029856
Number of rooted trees with 2-colored leaves.
Original entry on oeis.org
2, 2, 5, 13, 37, 108, 332, 1042, 3360, 11019, 36722, 123875, 422449, 1453553, 5040816, 17599468, 61814275, 218252584, 774226549, 2758043727, 9862357697, 35387662266, 127374191687, 459783039109, 1664042970924, 6037070913558, 21951214425140, 79981665585029
Offset: 1
-
A:= proc(n) option remember; if n=0 then 0 else convert(series(x+x* exp(sum(subs(x=x^i, A(n-1))/i, i=1..n-1)), x=0, n+1), polynom) fi end; a:= n-> coeff(A(n), x,n): seq(a(n), n=1..25); # Alois P. Heinz, Aug 22 2008
# second Maple program:
with(numtheory): a:= proc(n) option remember; local d,j; if n<=1 then 2*n else (add(d*a(d), d=divisors(n-1)) +add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-2))/ (n-1) fi end: seq(a(n), n=1..25); # Alois P. Heinz, Sep 06 2008
-
a[n_] := a[n] = If [n <= 1, 2*n, (Sum[d*a[d], {d, Divisors[n-1]}] + Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-2}])/(n-1)]; Array[a, 25] (* Jean-François Alcover, Mar 13 2015, after Alois P. Heinz *)
-
{a(n)=local(A=x+x*O(x^n));for(i=1,n, A=x+x*exp(sum(m=1,n,subst(A,x,x^m)/m)));polcoeff(A,n,x)} \\ Paul D. Hanna, Oct 19 2005
A088789
E.g.f.: REVERT(2*x/(1+exp(x))) = Sum_{n>=0} a(n)*x^n/n!.
Original entry on oeis.org
0, 1, 1, 3, 14, 90, 738, 7364, 86608, 1173240, 17990600, 308055528, 5826331440, 120629547584, 2713659864832, 65909241461760, 1718947213795328, 47912968352783232, 1421417290991105664, 44717945211445216640, 1487040748881346835200, 52117255681017313721088
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- V. Dotsenko, Pattern avoidance in labelled trees, arXiv preprint arXiv:1110.0844 [math.CO], 2011.
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 716-719.
- R. W. Whitty, Rook polynomials on two-dimensional surfaces and graceful labellings of graphs, Discrete Math., 308 (2008), 674-683.
Main diagonal of
A378561 (shifted).
-
a:= n->coeff(series(x/2-LambertW(-1/2*x*exp(1/2*x)), x=0, n+1), x, n)*n!:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 14 2008
-
Table[n!/2^n*Sum[2^j/j!*StirlingS2[n-1,n-j],{j,1,n}],{n,1,50}] (* Vaclav Kotesovec, Dec 25 2011 *)
With[{nmax = 50}, CoefficientList[Series[x/2 - LambertW[-x*Exp[x/2]/2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 14 2017 *)
-
a(n)=local(A); if(n<0,0,A=x+O(x^n);n!*polcoeff(serreverse(2*x/(1 + exp(x))), n))
-
x='x+O('x^50); concat([0], Vec(serlaplace(x/2 - lambertw(-x*exp(x/2)/2)))) \\ G. C. Greubel, Nov 14 2017
A214225
E.g.f. satisfies: A(x) = x/(1 - tanh(A(x))).
Original entry on oeis.org
1, 2, 12, 112, 1440, 23616, 471296, 11085824, 300349440, 9211187200, 315448860672, 11932326789120, 494098626904064, 22230301612703744, 1079857012109475840, 56326462301645307904, 3140024293968001892352, 186308007164786201591808, 11722541029509094870876160
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 112*x^4/4! + 1440*x^5/5! +...
Related expansions:
A(x) = x + x*tanh(x) + d/dx x^2*tanh(x)^2/2! + d^2/dx^2 x^3*tanh(x)^3/3! + d^3/dx^3 x^4*tanh(x)^4/4! +...
log(A(x)/x) = tanh(x) + d/dx x*tanh(x)^2/2! + d^2/dx^2 x^2*tanh(x)^3/3! + d^3/dx^3 x^3*tanh(x)^4/4! +...
A(x)/x = 1 + x + 4*x^2/2! + 28*x^3/3! + 288*x^4/4! + 3936*x^5/5! + 67328*x^6/6! +...+ A201595(n)*x^n/n! +...
tanh(A(x)) = x + 2*x^2/2! + 10*x^3/3! + 88*x^4/4! + 1096*x^5/5! + 17616*x^6/6! + 346704*x^7/7! + 8072576*x^8/8! +...
-
Rest[CoefficientList[InverseSeries[Series[x-x*Tanh[x],{x,0,20}],x],x]*Range[0,20]!] (* Vaclav Kotesovec, Sep 17 2013 *)
Flatten[{1,Table[1/2*Sum[Binomial[n,k]*k^(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Sep 17 2013 *)
-
{a(n)=(1/2)*sum(k=0,n,binomial(n,k)*k^(n-1))}
for(n=1, 25, print1(a(n), ", "))
-
{a(n)=(n-1)!*polcoeff(x/(1 - tanh(x+x*O(x^n)))^n,n)}
-
{a(n)=n!*polcoeff(serreverse(x-x*tanh(x+x*O(x^n))), n)}
-
{a(n)=n!*polcoeff(sum(k=1, n, k^(k-1)*cosh(k*x +x*O(x^n))*x^k/k! +x*O(x^n)), n)} \\ Paul D. Hanna, Nov 20 2012
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^m*tanh(x+x*O(x^n))^m/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*tanh(x+x*O(x^n))^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}
A100526
Number of local binary search trees (i.e., labeled binary trees such that every left child has a smaller label than its parent and every right child has a larger label than its parent) with n vertices such that the root has only one child.
Original entry on oeis.org
1, 2, 6, 28, 180, 1476, 14728, 173216, 2346480, 35981200, 616111056, 11652662880, 241259095168, 5427319729664, 131818482923520, 3437894427590656, 95825936705566464, 2842834581982211328, 89435890422890433280, 2974081497762693670400, 104234511362034627442176
Offset: 1
a(3)=6 because we have 3L2L1, 2L1R3, 3L1R2, 1R2R3, 1R3L2, 2R3L1 (Li means left child labeled i, RI means right child labeled i).
E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1476*x^6/6! +...
Given G(x) such that G( sqrt( G(x^2*exp(-x)) ) ) = x, where
G(x) = x + 1/2*x^2 + 1/8*x^3 + 1/12*x^4 + 77/384*x^5 + 23/120*x^6 + 2077/46080*x^7 + 179/5040*x^8 + 239525/2064384*x^9 +...+ A273952(n)*x^n/(2^(n-1)*(n-1)!) +...
then A(x) = G( sqrt( G(x^2*exp(x)) ) ). - _Paul D. Hanna_, Jun 06 2016
-
[2^(1-n)*(&+[ k^(n-1)*Binomial(n, k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Mar 27 2023
-
seq((1/2^(n-1))*add(k^(n-1)*binomial(n,k),k=1..n),n=1..22);
-
Rest[CoefficientList[Series[-2*LambertW[-x*E^(x/2)/2], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 23 2016 *)
-
/* Egf A(x) = G(sqrt(G(x^2*exp(x)))) if G(sqrt(G(x^2*exp(-x)))) = x */
{a(n) = my(G=x); for(i=1,n, G = serreverse( sqrt( subst(G,x, x^2*exp(-x +O(x^n))) ) )); A = subst(G,x,sqrt(subst(G,x,x^2*exp(x +O(x^n))))); n!*polcoeff(A,n)}
for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jun 06 2016
-
def A100526(n): return 2^(1-n)*sum( k^(n-1)*binomial(n, k) for k in range(1,n+1) )
[A100526(n) for n in range(1,40)] # G. C. Greubel, Mar 27 2023
A038050
Number of labeled rooted trees with 3-colored leaves.
Original entry on oeis.org
3, 6, 45, 504, 7785, 153468, 3681909, 104126256, 3392064945, 125089571700, 5151335388309, 234322765501608, 11668410187187481, 631335472193760012, 36881146426978035765, 2313552152470193124192, 155107536736245864549345
Offset: 1
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.83)
-
Rest[CoefficientList[Series[2*x-LambertW[-x*E^(2*x)], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 05 2013 *)
A038053
Number of labeled planted trees with 2-colored leaves.
Original entry on oeis.org
0, 4, 12, 96, 1120, 17280, 330624, 7540736, 199544832, 6006988800, 202646118400, 7570772656128, 310240496517120, 13834761553313792, 666909048381112320, 34555424387503226880, 1915099718255940468736
Offset: 1
-
CoefficientList[Series[(2+LambertW[-x*E^x])*(x-LambertW[-x*E^x])/(1+ LambertW[-x*E^x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 29 2014 *)
-
x='x+O('x^30); concat([0], Vec(serlaplace( (2+lambertw(-x*exp(x))) *(x-lambertw(-x*exp(x)))/(1+lambertw(-x*exp(x))) ))) \\ G. C. Greubel, Sep 09 2018
A360548
E.g.f. satisfies A(x) = x * exp( 2*(x + A(x)) ).
Original entry on oeis.org
0, 1, 8, 96, 1792, 46080, 1511424, 60325888, 2837970944, 153778913280, 9432255692800, 646039266656256, 48874810528235520, 4047655951598092288, 364221261622538141696, 35384754572803304325120, 3691411033400626898796544, 411569264258973944034361344
Offset: 0
-
A360548 := proc(n)
add((2*k)^(n-1)*binomial(n,k),k=1..n) ;
end proc:
seq(A360548(n),n=0..60) ; # R. J. Mathar, Mar 12 2023
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-2*x*exp(2*x))/2)))
-
a(n) = sum(k=1, n, (2*k)^(n-1)*binomial(n, k));
Showing 1-10 of 13 results.
Comments