cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A349562 Number of labeled rooted forests with 2-colored leaves.

Original entry on oeis.org

1, 2, 8, 56, 576, 7872, 134656, 2771456, 66744320, 1842237440, 57354338304, 1988721131520, 76015173369856, 3175757373243392, 143980934947930112, 7040807787705663488, 369414622819764928512, 20700889684976244621312, 1233951687316746828513280, 77963762014950356953333760
Offset: 0

Views

Author

Alexander Burstein, Nov 22 2021

Keywords

Comments

a(n) is the number of labeled trees on vertices 0,1,...,n rooted at 0, where all leaves have 2 colors (except the singleton tree 0 has only 1 color).

Examples

			a(2)=8 counts trees 0-1-2B, 0-1-2R, 0-2-1B, 0-2-1R, 1B-0-2B, 1B-0-2R, 1R-0-2B, 1R-0-2R (where B and R stand for colors Blue and Red).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[u/.AsymptoticSolve[u-E^(x(1+u))==0,u->1,{x,0,24}][[1]],x]Factorial/@Range[0,24]
    nmax = 20; CoefficientList[Series[-LambertW[-x*Exp[x]]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 25 2021 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k+1)^(k-1)*x^k/(1-(k+1)*x)^(k+1))) \\ Seiichi Manyama, Nov 26 2021

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*(k+1)^(n-1).
a(n) = A216857(n+1)/(n+1).
a(n) = A038049(n+1)/(n+1) for n>=1, and a(0) = A038049(1)/2.
a(n) = 2*A201595(n) - A000007(n).
E.g.f. satisfies: A(x) = e^(x*(1 + A(x))).
E.g.f. satisfies: A(-x*A(x)) = 1/A(x).
From Vaclav Kotesovec, Nov 25 2021: (Start)
E.g.f.: -LambertW(-x*exp(x))/x.
a(n) ~ sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (exp(n) * LambertW(exp(-1))^(n+1)).
(End)
From Seiichi Manyama, Nov 26 2021: (Start)
G.f.: Sum_{k>=0} (k+1)^(k-1) * x^k/(1 - (k+1)*x)^(k+1).
a(n) = 2^n * A007889(n). (End)

A202617 E.g.f. satisfies: A(x) = exp( x*(1 + A(x)^2)/2 ).

Original entry on oeis.org

1, 1, 3, 19, 185, 2441, 40747, 823691, 19564785, 534145105, 16482667091, 567343245635, 21552042260905, 895664877901145, 40422799315249275, 1968883362773653051, 102942561775293158369, 5750760587905912310177, 341848844954020959953059, 21545207157567497255044979
Offset: 0

Views

Author

Paul D. Hanna, Dec 21 2011

Keywords

Comments

Compare to e.g.f. F(x) of A007889: F(x) = exp(x*(1 + F(x))/2), where A007889(n) = number of intransitive (or alternating) trees: vertices are [0,n] and for no i
Related sequence: A058014(n) = number of labeled trees with n+1 nodes such that the degrees of all nodes, excluding the first node, are odd.

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 185*x^4/4! + 2441*x^5/5! +...
where log(A(x)) = x*(1 + A(x)^2)/2 and
log(A(x)) = x + 2*x^2/2! + 12*x^3/3! + 112*x^4/4! + 1440*x^5/5! + 23616*x^6/6! +...
A(x)^2 = 1 + 2*x + 8*x^2/2! + 56*x^3/3! + 576*x^4/4! + 7872*x^5/5! + 134656*x^6/6! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[-ProductLog[-E^x*x]/x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    a(n)=local(A=1+x); for(i=0, n, A=exp(x*(1+A^2)/2 +x*O(x^n))); n!*polcoeff(A, n)
    
  • PARI
    /* Coefficients of A(x)^p are given by: */
    {a(n, p=1)=(1/2^n)*sum(k=0, n, binomial(n, k)*p*(2*k+p)^(n-1))}
    
  • PARI
    a(n)=n!*polcoeff(exp(sum(k=1,n,k^(k-1)*cosh(k*x +x*O(x^n))*x^k/k!) +x*O(x^n)),n)
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Nov 20 2012

Formula

E.g.f. A(x) equals the formal inverse of function 2*log(x)/(1+x^2).
E.g.f.: exp( Sum_{n>=1} n^(n-1) * cosh(n*x) * x^n / n! ). - Paul D. Hanna, Nov 20 2012
E.g.f.: exp(G(x)) where G(x) = x/(1 - tanh(G(x))) is the e.g.f. of A214225. - Paul D. Hanna, Nov 20 2012
E.g.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the e.g.f. of A058014.
a(n) = (1/2^n)*Sum_{k=0..n} C(n,k)*(2*k+1)^(n-1).
Powers of e.g.f.:
If A(x)^p = Sum_{n>=0} a(n,p)*x^n/n! then a(n,p) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*p*(2*k+p)^(n-1).
a(n) ~ sqrt(1+c) * n^(n-1) / (2 * exp(n) * c^(n+1/2)), where c = LambertW(exp(-1)) = 0.278464542761... (see A202357). - Vaclav Kotesovec, Jan 10 2014
E.g.f.: sqrt(-LambertW(-x*exp(x))/x). - Vaclav Kotesovec, Jan 10 2014

A349719 E.g.f. satisfies: A(x) = exp( x * (1 + 1/A(x))/2 ).

Original entry on oeis.org

1, 1, 0, 1, -4, 26, -212, 2108, -24720, 334072, -5112544, 87396728, -1650607040, 34132685120, -767025716736, 18612106195456, -485013257865472, 13509071081429888, -400505695457942528, 12592502771190979712, -418524228123134068224
Offset: 0

Author

Seiichi Manyama, Nov 27 2021

Keywords

Programs

  • Mathematica
    a[n_] := (1/2^n) * Sum[If[k == n == 1, 1, (-k + 1)^(n - 1)] * Binomial[n, k], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-k+1)^(n-1)*binomial(n, k))/2^n;
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace((x/2)/lambertw(x/2*exp(-x/2))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(2*sum(k=0, N, (-k+1)^(k-1)*x^k/(2-(-k+1)*x)^(k+1)))

Formula

a(n) = (1/2^n) * Sum_{k=0..n} (-k+1)^(n-1) * binomial(n,k).
E.g.f.: (x/2)/LambertW( x/2 * exp(-x/2) ).
G.f.: 2 * Sum_{k>=0} (-k+1)^(k-1) * x^k/(2 - (-k+1)*x)^(k+1).
a(n) ~ -(-1)^n * sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (2^n * exp(n) * LambertW(exp(-1))^(n-1)). - Vaclav Kotesovec, Dec 05 2021

A138860 E.g.f. satisfies: A(x) = exp( x*(A(x) + A(x)^2)/2 ).

Original entry on oeis.org

1, 1, 4, 31, 364, 5766, 115300, 2788724, 79197040, 2583928360, 95256535936, 3916137470664, 177651980724160, 8815348234689920, 474993826614917632, 27619367979975064576, 1723821221240101984000, 114948301218300412117632
Offset: 0

Author

Paul D. Hanna, Apr 01 2008, Apr 02 2008, Apr 03 2008

Keywords

Comments

The related sequence A007889 enumerates the number of intransitive (or alternating) trees.
a(n+1) is the number of incomplete ternary trees on n labeled vertices in which each left child has a larger label than its parent and each middle child has a smaller label than its parent. - Brian Drake, Jul 28 2008

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 31*x^3/3! + 364*x^4/4! + 5766*x^5/5! + ...
		

Crossrefs

Programs

  • Mathematica
    Table[1/2^n * Sum[Binomial[n,k]*(n+k+1)^(n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 15 2013 *)
  • PARI
    a(n)=(1/2^n)*sum(k=0,n,binomial(n,k)*(n+k+1)^(n-1))
    
  • PARI
    /* Series Reversion: */
    a(n)=local(X=x+x*O(x^n));n!*polcoeff(exp(serreverse(2*x/(exp(X)+exp(2*X)) )),n)
    
  • PARI
    /* Coefficients of A(x)^p are given by: */
    {a(n,p=1)=(1/2^n)*sum(k=0,n,binomial(n,k)*p*(n+k+p)^(n-1))}

Formula

a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+k+1)^(n-1) - Vladeta Jovovic, Mar 31 2008.
E.g.f. satisfies: A( 2*x/( exp(x) + exp(2*x) ) ) = exp(x).
E.g.f.: A(x) = inverse function of 2*log(x)/(x + x^2).
E.g.f.: A(x) = exp( Series_Reversion[ 2*x/(exp(x) + exp(2*x)) ] ).
E.g.f.: A(x) = G(x/2) where G(x) = e.g.f. of A138764.
More generally, if A(x) = Sum_{n>=0} a(n)*x^n/n! = exp( x*[A(x) + A(x)^m]/2 ) then a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+(m-1)*k+1)^(n-1) and if B(x) = Sum_{n>=0} b(n)*x^n/n! = log(A(x)) then b(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+(m-1)*k)^(n-1). - Paul D. Hanna and Vladeta Jovovic, Apr 02 2008
Powers of e.g.f.: If A(x)^p = Sum_{n>=0} a(n,p)*x^n/n! then
. a(n,p) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*p*(n+k+p)^(n-1).
Given e.g.f. A(x), let B(x) = e.g.f. of A007889, then
. A(x) = B(x*A(x)) = (1/x)*Series_Reversion(x/B(x)) and
. B(x) = A(x/B(x)) = x/Series_Reversion(x*A(x)).
a(n) ~ n^(n-1)*(1+r)^n*r^(n+1)/(sqrt(1+3*r)*(1-r)^(2*n+1)*exp(n)*2^n), where r = 0.6472709258412625... is the root of the equation (r/(1-r))^(1+r) = e. - Vaclav Kotesovec, Jun 15 2013

A349714 E.g.f. satisfies: A(x) = exp( x * (1 + A(x)^3)/2 ).

Original entry on oeis.org

1, 1, 4, 37, 532, 10426, 259300, 7823908, 277713904, 11339452792, 523621438336, 26982030104536, 1534947906550528, 95550736737542464, 6460746383585984512, 471533064029919744256, 36946948091091750496000, 3093472887944746070621056
Offset: 0

Author

Seiichi Manyama, Nov 26 2021

Keywords

Programs

  • Mathematica
    a[n_] := (1/2^n) * Sum[(3*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    a(n) = sum(k=0, n, (3*k+1)^(n-1)*binomial(n, k))/2^n;
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((-lambertw(-3*x/2*exp(3*x/2))/(3*x/2))^(1/3)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (3*k+1)^(k-1)*x^k/(2-(3*k+1)*x)^(k+1)))

Formula

a(n) = (1/2^n) * Sum_{k=0..n} (3*k+1)^(n-1) * binomial(n,k).
E.g.f.: ( -LambertW( -3*x/2 * exp(3*x/2) )/(3*x/2) )^(1/3).
G.f.: 2 * Sum_{k>=0} (3*k+1)^(k-1) * x^k/(2 - (3*k+1)*x)^(k+1).
a(n) ~ sqrt(1 + LambertW(exp(-1))) * 3^(n-1) * n^(n-1) / (LambertW(exp(-1))^(n + 1/3) * 2^n * exp(n)). - Vaclav Kotesovec, Nov 26 2021

A349716 E.g.f. satisfies: A(x) = exp( x * (1 + A(x)^5)/2 ).

Original entry on oeis.org

1, 1, 6, 91, 2156, 69926, 2884576, 144555356, 8529135216, 579220982056, 44503081624976, 3816776859516776, 361462121953291456, 37464997600663289216, 4218485281787859411456, 512762346462142021355776, 66919363061333997572830976, 9332997074366800051673277056
Offset: 0

Author

Seiichi Manyama, Nov 26 2021

Keywords

Programs

  • Mathematica
    a[n_] := (1/2^n) * Sum[(5*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    a(n) = sum(k=0, n, (5*k+1)^(n-1)*binomial(n, k))/2^n;
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((-lambertw(-5*x/2*exp(5*x/2))/(5*x/2))^(1/5)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (5*k+1)^(k-1)*x^k/(2-(5*k+1)*x)^(k+1)))

Formula

a(n) = (1/2^n) * Sum_{k=0..n} (5*k+1)^(n-1) * binomial(n,k).
E.g.f.: ( -LambertW( -5*x/2 * exp(5*x/2) )/(5*x/2) )^(1/5).
G.f.: 2 * Sum_{k>=0} (5*k+1)^(k-1) * x^k/(2 - (5*k+1)*x)^(k+1).
a(n) ~ sqrt(1 + LambertW(exp(-1))) * 5^(n-1) * n^(n-1) / (LambertW(exp(-1))^(n + 1/5) * 2^n * exp(n)). - Vaclav Kotesovec, Nov 26 2021

A349720 E.g.f. satisfies: A(x) = exp( x * (1 + 1/A(x)^2)/2 ).

Original entry on oeis.org

1, 1, -1, 7, -63, 801, -13025, 258343, -6048511, 163276417, -4992740289, 170571634311, -6439161507647, 266180947507489, -11958385377911713, 580151397382158631, -30227616424300542975, 1683438461080186841601, -99796591057813372007297
Offset: 0

Author

Seiichi Manyama, Nov 27 2021

Keywords

Programs

  • Mathematica
    a[n_] := (1/2^n) * Sum[(-2*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-2*k+1)^(n-1)*binomial(n, k))/2^n;
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((x/lambertw(x*exp(-x)))^(1/2)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (-2*k+1)^(k-1)*x^k/(2-(-2*k+1)*x)^(k+1)))

Formula

a(n) = (1/2^n) * Sum_{k=0..n} (-2*k+1)^(n-1) * binomial(n,k).
E.g.f.: ( x/LambertW( x * exp(-x) ) )^(1/2).
G.f.: 2 * Sum_{k>=0} (-2*k+1)^(k-1) * x^k/(2 - (-2*k+1)*x)^(k+1).
a(n) ~ -(-1)^n * sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (2 * exp(n) * LambertW(exp(-1))^(n - 1/2)). - Vaclav Kotesovec, Dec 05 2021

A349715 E.g.f. satisfies: A(x) = exp( x * (1 + A(x)^4)/2 ).

Original entry on oeis.org

1, 1, 5, 61, 1161, 30201, 998413, 40077493, 1893550865, 102951388657, 6331847746581, 434653328279853, 32944254978940825, 2732662648183661545, 246228744062320481309, 23949858491053731087781, 2501088964314980938821153, 279111248034686114681365473
Offset: 0

Author

Seiichi Manyama, Nov 26 2021

Keywords

Programs

  • Mathematica
    a[n_] := (1/2^n) * Sum[(4*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    a(n) = sum(k=0, n, (4*k+1)^(n-1)*binomial(n, k))/2^n;
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((-lambertw(-2*x*exp(2*x))/(2*x))^(1/4)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (4*k+1)^(k-1)*x^k/(2-(4*k+1)*x)^(k+1)))

Formula

a(n) = (1/2^n) * Sum_{k=0..n} (4*k+1)^(n-1) * binomial(n,k).
E.g.f.: ( -LambertW( -2*x * exp(2*x) )/(2*x) )^(1/4).
G.f.: 2 * Sum_{k>=0} (4*k+1)^(k-1) * x^k/(2 - (4*k+1)*x)^(k+1).
a(n) ~ sqrt(1 + LambertW(exp(-1))) * 2^(n-2) * n^(n-1) / (LambertW(exp(-1))^(n + 1/4) * exp(n)). - Vaclav Kotesovec, Nov 26 2021

A349721 E.g.f. satisfies: A(x) = exp( x * (1 + 1/A(x)^3)/2 ).

Original entry on oeis.org

1, 1, -2, 19, -260, 4966, -121328, 3613996, -127035920, 5147600680, -236245559984, 12112405259560, -686148484748480, 42560312499982720, -2868921992458611200, 208828244778853125376, -16324500711130356582656, 1363986660232205656646272
Offset: 0

Author

Seiichi Manyama, Nov 27 2021

Keywords

Programs

  • Mathematica
    a[n_] := (1/2^n) * Sum[(-3*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-3*k+1)^(n-1)*binomial(n, k))/2^n;
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(((3*x/2)/lambertw(3*x/2*exp(-3*x/2)))^(1/3)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (-3*k+1)^(k-1)*x^k/(2-(-3*k+1)*x)^(k+1)))

Formula

a(n) = (1/2^n) * Sum_{k=0..n} (-3*k+1)^(n-1) * binomial(n,k).
E.g.f.: ( (3*x/2)/LambertW( 3*x/2 * exp(-3*x/2) ) )^(1/3).
G.f.: 2 * Sum_{k>=0} (-3*k+1)^(k-1) * x^k/(2 - (-3*k+1)*x)^(k+1).
a(n) ~ -(-1)^n * sqrt(1 + LambertW(exp(-1))) * 3^(n-1) * n^(n-1) / (2^n * exp(n) * LambertW(exp(-1))^(n - 1/3)). - Vaclav Kotesovec, Dec 05 2021

A100526 Number of local binary search trees (i.e., labeled binary trees such that every left child has a smaller label than its parent and every right child has a larger label than its parent) with n vertices such that the root has only one child.

Original entry on oeis.org

1, 2, 6, 28, 180, 1476, 14728, 173216, 2346480, 35981200, 616111056, 11652662880, 241259095168, 5427319729664, 131818482923520, 3437894427590656, 95825936705566464, 2842834581982211328, 89435890422890433280, 2974081497762693670400, 104234511362034627442176
Offset: 1

Author

Emeric Deutsch, Nov 24 2004

Keywords

Examples

			a(3)=6 because we have 3L2L1, 2L1R3, 3L1R2, 1R2R3, 1R3L2, 2R3L1 (Li means left child labeled i, RI means right child labeled i).
E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1476*x^6/6! +...
Given G(x) such that G( sqrt( G(x^2*exp(-x)) ) ) = x, where
G(x) = x + 1/2*x^2 + 1/8*x^3 + 1/12*x^4 + 77/384*x^5 + 23/120*x^6 + 2077/46080*x^7 + 179/5040*x^8 + 239525/2064384*x^9 +...+ A273952(n)*x^n/(2^(n-1)*(n-1)!) +...
then A(x) = G( sqrt( G(x^2*exp(x)) ) ). - _Paul D. Hanna_, Jun 06 2016
		

Crossrefs

Programs

  • Magma
    [2^(1-n)*(&+[ k^(n-1)*Binomial(n, k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Mar 27 2023
    
  • Maple
    seq((1/2^(n-1))*add(k^(n-1)*binomial(n,k),k=1..n),n=1..22);
  • Mathematica
    Rest[CoefficientList[Series[-2*LambertW[-x*E^(x/2)/2], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 23 2016 *)
  • PARI
    /* Egf A(x) = G(sqrt(G(x^2*exp(x)))) if G(sqrt(G(x^2*exp(-x)))) = x */
    {a(n) = my(G=x); for(i=1,n, G = serreverse( sqrt( subst(G,x, x^2*exp(-x +O(x^n))) ) )); A = subst(G,x,sqrt(subst(G,x,x^2*exp(x +O(x^n))))); n!*polcoeff(A,n)}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jun 06 2016
    
  • SageMath
    def A100526(n): return 2^(1-n)*sum( k^(n-1)*binomial(n, k) for k in range(1,n+1) )
    [A100526(n) for n in range(1,40)] # G. C. Greubel, Mar 27 2023

Formula

a(n) = (1/2^(n-1))*Sum_{k=1..n} k^(n-1)*binomial(n, k).
a(n) = n*A007889(n-1).
E.g.f.: -2*LambertW(-x*exp(x/2)/2). - Paul D. Hanna, Jun 07 2016, after Vladeta Jovovic's formula in A038049
E.g.f.: G( sqrt( G(x^2*exp(x)) ) ), where G( sqrt( G(x^2*exp(-x)) ) ) = x, and G(x) is the e.g.f. of A273952. - Paul D. Hanna, Jun 06 2016
a(n) ~ sqrt(1 + LambertW(exp(-1)))*n^(n-1) / (2^(n-1) * exp(n) * LambertW(exp(-1))^n). - Vaclav Kotesovec, Jun 23 2016
Showing 1-10 of 17 results. Next