A349562
Number of labeled rooted forests with 2-colored leaves.
Original entry on oeis.org
1, 2, 8, 56, 576, 7872, 134656, 2771456, 66744320, 1842237440, 57354338304, 1988721131520, 76015173369856, 3175757373243392, 143980934947930112, 7040807787705663488, 369414622819764928512, 20700889684976244621312, 1233951687316746828513280, 77963762014950356953333760
Offset: 0
a(2)=8 counts trees 0-1-2B, 0-1-2R, 0-2-1B, 0-2-1R, 1B-0-2B, 1B-0-2R, 1R-0-2B, 1R-0-2R (where B and R stand for colors Blue and Red).
-
CoefficientList[u/.AsymptoticSolve[u-E^(x(1+u))==0,u->1,{x,0,24}][[1]],x]Factorial/@Range[0,24]
nmax = 20; CoefficientList[Series[-LambertW[-x*Exp[x]]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 25 2021 *)
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k+1)^(k-1)*x^k/(1-(k+1)*x)^(k+1))) \\ Seiichi Manyama, Nov 26 2021
A202617
E.g.f. satisfies: A(x) = exp( x*(1 + A(x)^2)/2 ).
Original entry on oeis.org
1, 1, 3, 19, 185, 2441, 40747, 823691, 19564785, 534145105, 16482667091, 567343245635, 21552042260905, 895664877901145, 40422799315249275, 1968883362773653051, 102942561775293158369, 5750760587905912310177, 341848844954020959953059, 21545207157567497255044979
Offset: 0
A349719
E.g.f. satisfies: A(x) = exp( x * (1 + 1/A(x))/2 ).
Original entry on oeis.org
1, 1, 0, 1, -4, 26, -212, 2108, -24720, 334072, -5112544, 87396728, -1650607040, 34132685120, -767025716736, 18612106195456, -485013257865472, 13509071081429888, -400505695457942528, 12592502771190979712, -418524228123134068224
Offset: 0
-
a[n_] := (1/2^n) * Sum[If[k == n == 1, 1, (-k + 1)^(n - 1)] * Binomial[n, k], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Nov 27 2021 *)
-
a(n) = sum(k=0, n, (-k+1)^(n-1)*binomial(n, k))/2^n;
-
my(N=40, x='x+O('x^N)); Vec(serlaplace((x/2)/lambertw(x/2*exp(-x/2))))
-
my(N=40, x='x+O('x^N)); Vec(2*sum(k=0, N, (-k+1)^(k-1)*x^k/(2-(-k+1)*x)^(k+1)))
A138860
E.g.f. satisfies: A(x) = exp( x*(A(x) + A(x)^2)/2 ).
Original entry on oeis.org
1, 1, 4, 31, 364, 5766, 115300, 2788724, 79197040, 2583928360, 95256535936, 3916137470664, 177651980724160, 8815348234689920, 474993826614917632, 27619367979975064576, 1723821221240101984000, 114948301218300412117632
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 31*x^3/3! + 364*x^4/4! + 5766*x^5/5! + ...
-
Table[1/2^n * Sum[Binomial[n,k]*(n+k+1)^(n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 15 2013 *)
-
a(n)=(1/2^n)*sum(k=0,n,binomial(n,k)*(n+k+1)^(n-1))
-
/* Series Reversion: */
a(n)=local(X=x+x*O(x^n));n!*polcoeff(exp(serreverse(2*x/(exp(X)+exp(2*X)) )),n)
-
/* Coefficients of A(x)^p are given by: */
{a(n,p=1)=(1/2^n)*sum(k=0,n,binomial(n,k)*p*(n+k+p)^(n-1))}
A349714
E.g.f. satisfies: A(x) = exp( x * (1 + A(x)^3)/2 ).
Original entry on oeis.org
1, 1, 4, 37, 532, 10426, 259300, 7823908, 277713904, 11339452792, 523621438336, 26982030104536, 1534947906550528, 95550736737542464, 6460746383585984512, 471533064029919744256, 36946948091091750496000, 3093472887944746070621056
Offset: 0
-
a[n_] := (1/2^n) * Sum[(3*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *)
-
a(n) = sum(k=0, n, (3*k+1)^(n-1)*binomial(n, k))/2^n;
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((-lambertw(-3*x/2*exp(3*x/2))/(3*x/2))^(1/3)))
-
my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (3*k+1)^(k-1)*x^k/(2-(3*k+1)*x)^(k+1)))
A349716
E.g.f. satisfies: A(x) = exp( x * (1 + A(x)^5)/2 ).
Original entry on oeis.org
1, 1, 6, 91, 2156, 69926, 2884576, 144555356, 8529135216, 579220982056, 44503081624976, 3816776859516776, 361462121953291456, 37464997600663289216, 4218485281787859411456, 512762346462142021355776, 66919363061333997572830976, 9332997074366800051673277056
Offset: 0
-
a[n_] := (1/2^n) * Sum[(5*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *)
-
a(n) = sum(k=0, n, (5*k+1)^(n-1)*binomial(n, k))/2^n;
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((-lambertw(-5*x/2*exp(5*x/2))/(5*x/2))^(1/5)))
-
my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (5*k+1)^(k-1)*x^k/(2-(5*k+1)*x)^(k+1)))
A349720
E.g.f. satisfies: A(x) = exp( x * (1 + 1/A(x)^2)/2 ).
Original entry on oeis.org
1, 1, -1, 7, -63, 801, -13025, 258343, -6048511, 163276417, -4992740289, 170571634311, -6439161507647, 266180947507489, -11958385377911713, 580151397382158631, -30227616424300542975, 1683438461080186841601, -99796591057813372007297
Offset: 0
-
a[n_] := (1/2^n) * Sum[(-2*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 27 2021 *)
-
a(n) = sum(k=0, n, (-2*k+1)^(n-1)*binomial(n, k))/2^n;
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((x/lambertw(x*exp(-x)))^(1/2)))
-
my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (-2*k+1)^(k-1)*x^k/(2-(-2*k+1)*x)^(k+1)))
A349715
E.g.f. satisfies: A(x) = exp( x * (1 + A(x)^4)/2 ).
Original entry on oeis.org
1, 1, 5, 61, 1161, 30201, 998413, 40077493, 1893550865, 102951388657, 6331847746581, 434653328279853, 32944254978940825, 2732662648183661545, 246228744062320481309, 23949858491053731087781, 2501088964314980938821153, 279111248034686114681365473
Offset: 0
-
a[n_] := (1/2^n) * Sum[(4*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *)
-
a(n) = sum(k=0, n, (4*k+1)^(n-1)*binomial(n, k))/2^n;
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((-lambertw(-2*x*exp(2*x))/(2*x))^(1/4)))
-
my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (4*k+1)^(k-1)*x^k/(2-(4*k+1)*x)^(k+1)))
A349721
E.g.f. satisfies: A(x) = exp( x * (1 + 1/A(x)^3)/2 ).
Original entry on oeis.org
1, 1, -2, 19, -260, 4966, -121328, 3613996, -127035920, 5147600680, -236245559984, 12112405259560, -686148484748480, 42560312499982720, -2868921992458611200, 208828244778853125376, -16324500711130356582656, 1363986660232205656646272
Offset: 0
-
a[n_] := (1/2^n) * Sum[(-3*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *)
-
a(n) = sum(k=0, n, (-3*k+1)^(n-1)*binomial(n, k))/2^n;
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(((3*x/2)/lambertw(3*x/2*exp(-3*x/2)))^(1/3)))
-
my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (-3*k+1)^(k-1)*x^k/(2-(-3*k+1)*x)^(k+1)))
A100526
Number of local binary search trees (i.e., labeled binary trees such that every left child has a smaller label than its parent and every right child has a larger label than its parent) with n vertices such that the root has only one child.
Original entry on oeis.org
1, 2, 6, 28, 180, 1476, 14728, 173216, 2346480, 35981200, 616111056, 11652662880, 241259095168, 5427319729664, 131818482923520, 3437894427590656, 95825936705566464, 2842834581982211328, 89435890422890433280, 2974081497762693670400, 104234511362034627442176
Offset: 1
a(3)=6 because we have 3L2L1, 2L1R3, 3L1R2, 1R2R3, 1R3L2, 2R3L1 (Li means left child labeled i, RI means right child labeled i).
E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1476*x^6/6! +...
Given G(x) such that G( sqrt( G(x^2*exp(-x)) ) ) = x, where
G(x) = x + 1/2*x^2 + 1/8*x^3 + 1/12*x^4 + 77/384*x^5 + 23/120*x^6 + 2077/46080*x^7 + 179/5040*x^8 + 239525/2064384*x^9 +...+ A273952(n)*x^n/(2^(n-1)*(n-1)!) +...
then A(x) = G( sqrt( G(x^2*exp(x)) ) ). - _Paul D. Hanna_, Jun 06 2016
-
[2^(1-n)*(&+[ k^(n-1)*Binomial(n, k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Mar 27 2023
-
seq((1/2^(n-1))*add(k^(n-1)*binomial(n,k),k=1..n),n=1..22);
-
Rest[CoefficientList[Series[-2*LambertW[-x*E^(x/2)/2], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 23 2016 *)
-
/* Egf A(x) = G(sqrt(G(x^2*exp(x)))) if G(sqrt(G(x^2*exp(-x)))) = x */
{a(n) = my(G=x); for(i=1,n, G = serreverse( sqrt( subst(G,x, x^2*exp(-x +O(x^n))) ) )); A = subst(G,x,sqrt(subst(G,x,x^2*exp(x +O(x^n))))); n!*polcoeff(A,n)}
for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jun 06 2016
-
def A100526(n): return 2^(1-n)*sum( k^(n-1)*binomial(n, k) for k in range(1,n+1) )
[A100526(n) for n in range(1,40)] # G. C. Greubel, Mar 27 2023
Showing 1-10 of 17 results.
Next
Comments