A050381
Number of series-reduced planted trees with n leaves of 2 colors.
Original entry on oeis.org
2, 3, 10, 40, 170, 785, 3770, 18805, 96180, 502381, 2667034, 14351775, 78096654, 429025553, 2376075922, 13252492311, 74372374366, 419651663108, 2379399524742, 13549601275893, 77460249369658, 444389519874841
Offset: 1
For n=2, the 2*a(2) = 6 elements are: A+A, A+B, B+B, A*A, A*B, B*B. - _Michael Somos_, Aug 07 2017
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012. - From _N. J. A. Sloane_, Dec 22 2012
- N. J. A. Sloane, Transforms
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
- Index entries for sequences related to rooted trees
Lone-child-avoiding rooted trees with n leaves are
A000669.
Lone-child-avoiding rooted trees with n vertices are
A001678.
The locally disjoint case is
A331874.
Semi-lone-child-avoiding rooted trees with n vertices are
A331934.
Matula-Goebel numbers of these trees are
A331935.
-
terms = 22;
B[x_] = x O[x]^(terms+1);
A[x_] = 1/(1 - x + B[x])^2;
Do[A[x_] = A[x]/(1 - x^k + B[x])^Coefficient[A[x], x, k] + O[x]^(terms+1) // Normal, {k, 2, terms+1}];
Join[{2}, Drop[CoefficientList[A[x], x]/2, 2]] (* Jean-François Alcover, Aug 17 2018, after Michael Somos *)
slaurte[n_]:=If[n==1,{o,{o}},Join@@Table[Union[Sort/@Tuples[slaurte/@ptn]],{ptn,Rest[IntegerPartitions[n]]}]];
Table[Length[slaurte[n]],{n,10}] (* Gus Wiseman, Feb 07 2020 *)
-
{a(n) = my(A, B); if( n<2, 2*(n>0), B = x * O(x^n); A = 1 / (1 - x + B)^2; for(k=2, n, A /= (1 - x^k + B)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Aug 07 2017 */
A036249
Number of rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
Original entry on oeis.org
0, 1, 2, 5, 13, 37, 108, 332, 1042, 3360, 11019, 36722, 123875, 422449, 1453553, 5040816, 17599468, 61814275, 218252584, 774226549, 2758043727, 9862357697, 35387662266, 127374191687, 459783039109, 1664042970924, 6037070913558, 21951214425140, 79981665585029
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1717
- Håvard Berland, Brynjulf Owren and Bård Skaflestad, B-series and order conditions for exponential integrators, 2004. See p. 6.
- F. Chapoton, F. Hivert, and J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- F. Chapoton, F. Hivert, and J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, Journal of Algebra, 465 (2016), 322-355.
- Timothy Y. Chow and Mark G. Tiefenbruck, The Latin Tableau Conjecture, 2024. See p. 11.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 768
- Index entries for sequences related to rooted trees
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*
add(d*a(d), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+b(n-1)) end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 13 2018
-
max = 27; A[] = 1; Do[A[x] = x*Exp[Sum[(A[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[A[x] + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
-
{a(n)=local(A=x+x*O(x^n));for(i=1,n, A=x*exp(sum(m=1,n,(subst(A,x,x^m)+x^m)/m)));polcoeff(A,n,x)} \\ Paul D. Hanna, Oct 19 2005
A038049
Number of labeled rooted trees with 2-colored leaves.
Original entry on oeis.org
2, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320
Offset: 1
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.83)
-
a:= n-> add(binomial(n, k)*(n-k)^(n-1), k=0..n):
seq(a(n), n=1..20); # Alois P. Heinz, Nov 30 2012
-
Table[n!*Sum[2^j/j!*StirlingS2[n-1,n-j],{j,1,n}],{n,1,20}] (* Vaclav Kotesovec, Nov 30 2012 *)
A052855
Number of forests of rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
Original entry on oeis.org
1, 1, 3, 8, 24, 71, 224, 710, 2318, 7659, 25703, 87153, 298574, 1031104, 3587263, 12558652, 44214807, 156438309, 555973965, 1983817178, 7104313970, 25525304569, 91986529421, 332408847422, 1204259931815, 4373027942634, 15914143511582, 58030451159889
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Sequence(Z,1 <= card),S=Set(C),C=Prod(B,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
max = 26; A[] = 1; Do[A[x] = Exp[Sum[A[x^k]/(1 - x^k)*x^k/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[A[x] + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
-
{a(n)=my(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A/(1-x),x,x^m+x*O(x^n))*x^m/m)));polcoeff(A,n)} /* Paul D. Hanna, Oct 26 2011 */
A029857
Number of rooted trees with 3-colored leaves.
Original entry on oeis.org
3, 3, 9, 28, 94, 328, 1197, 4486, 17235, 67429, 267932, 1078003, 4383784, 17987897, 74385984, 309694232, 1297037177, 5460726214, 23098296648, 98113995068, 418335662448, 1789814398035, 7681522429474, 33061825858259, 142674028869587, 617180102839217
Offset: 1
-
with(numtheory): a:= proc(n) option remember; local d,j; if n<=1 then 3*n else (add(d*a(d), d=divisors(n-1)) +add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-2))/ (n-1) fi end: seq(a(n), n=1..30); # Alois P. Heinz, Sep 06 2008
-
a[n_] := a[n] = If[n<=1, 3*n, (Sum[d*a[d], {d, Divisors[n-1]}] + Sum[Sum[ d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-2}])/(n-1)]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 21 2016 *)
A036251
Number of trees with 2-colored leaves.
Original entry on oeis.org
1, 2, 3, 3, 7, 14, 35, 85, 231, 633, 1845, 5461, 16707, 51945, 164695, 529077, 1722279, 5664794, 18813369, 62996850, 212533226, 721792761, 2466135375, 8471967938, 29249059293, 101440962296, 353289339927, 1235154230060
Offset: 0
-
max = 30; B[] = 1; Do[B[x] = x*Exp[Sum[(B[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; A[x_] = 1 + x + x^2 + B[x] - B[x]^2/2 + B[x^2]/2; CoefficientList[A[x] + O[x]^max, x] (* Jean-François Alcover, Jan 28 2019 *)
A318151
e-numbers of unlabeled rooted trees with empty leaves o[] allowed. A number n is in the sequence iff n = 2^(prime(y_1) * ... * prime(y_k)) for some k >= 0 and y_1, ..., y_k already in the sequence.
Original entry on oeis.org
1, 2, 4, 8, 16, 64, 128, 256, 512, 4096, 16384, 65536, 262144, 524288, 2097152, 16777216, 134217728, 268435456, 4294967296, 68719476736, 274877906944, 4398046511104, 281474976710656, 562949953421312, 9007199254740992, 18014398509481984, 72057594037927936
Offset: 1
A308227
G.f.: (x/(1 - x)) * Product_{k>=1} ((1 + x^k)/(1 - x^k))^a(k).
Original entry on oeis.org
1, 3, 11, 47, 217, 1065, 5453, 28789, 155633, 857207, 4793103, 27136555, 155249971, 896133487, 5212477023, 30522169103, 179777122393, 1064411910393, 6331361864657, 37817265028841, 226731778956181, 1363993567341257, 8231111557650837, 49812263080757845
Offset: 1
-
a[n_] := a[n] = SeriesCoefficient[x/(1 - x) Product[((1 + x^k)/(1 - x^k))^a[k], {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 24}]
terms = 24; A[] = 0; Do[A[x] = x Exp[Sum[2 A[x^(2 k - 1)]/(2 k - 1) + x^k/k, {k, 1, terms}]] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest
Showing 1-8 of 8 results.
Comments