cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A029856 Number of rooted trees with 2-colored leaves.

Original entry on oeis.org

2, 2, 5, 13, 37, 108, 332, 1042, 3360, 11019, 36722, 123875, 422449, 1453553, 5040816, 17599468, 61814275, 218252584, 774226549, 2758043727, 9862357697, 35387662266, 127374191687, 459783039109, 1664042970924, 6037070913558, 21951214425140, 79981665585029
Offset: 1

Views

Author

Keywords

Crossrefs

Essentially the same as A036249.

Programs

  • Maple
    A:= proc(n) option remember; if n=0 then 0 else convert(series(x+x* exp(sum(subs(x=x^i, A(n-1))/i, i=1..n-1)), x=0, n+1), polynom) fi end; a:= n-> coeff(A(n), x,n): seq(a(n), n=1..25); # Alois P. Heinz, Aug 22 2008
    # second Maple program:
    with(numtheory): a:= proc(n) option remember; local d,j; if n<=1 then 2*n else (add(d*a(d), d=divisors(n-1)) +add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-2))/ (n-1) fi end: seq(a(n), n=1..25); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    a[n_] := a[n] = If [n <= 1, 2*n, (Sum[d*a[d], {d, Divisors[n-1]}] + Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-2}])/(n-1)]; Array[a, 25] (* Jean-François Alcover, Mar 13 2015, after Alois P. Heinz *)
  • PARI
    {a(n)=local(A=x+x*O(x^n));for(i=1,n, A=x+x*exp(sum(m=1,n,subst(A,x,x^m)/m)));polcoeff(A,n,x)} \\ Paul D. Hanna, Oct 19 2005

Formula

Shifts left under Euler transform.
G.f. satisfies: A(x) = x + x*exp( Sum_{n>=1} A(x^n)/n ). - Paul D. Hanna, Oct 19 2005
a(n) ~ c * d^n / n^(3/2), where d = 3.848442876944251389076286931217197... and c = 0.48335853985605895591573724406549734... - Vaclav Kotesovec, Mar 29 2014

A362389 G.f. satisfies A(x) = exp( Sum_{k>=1} (2^k + A(x^k)) * x^k/k ).

Original entry on oeis.org

1, 3, 10, 34, 122, 450, 1723, 6758, 27135, 110913, 460395, 1935233, 8222504, 35255000, 152353021, 662892684, 2901595559, 12768195617, 56450822365, 250637657015, 1117060889815, 4995815027658, 22413020866875, 100842092305575, 454912716037387
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (2^k+subst(A, x, x^k))*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = B(x)/(1 - 2*x) where B(x) is the g.f. of A363545.
A(x) = Sum_{k>=0} a(k) * x^k = 1/(1-2*x) * 1/Product_{k>=0} (1-x^(k+1))^a(k).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( 2^k + Sum_{d|k} d * a(d-1) ) * a(n-k).

A363507 G.f. satisfies A(x) = exp( Sum_{k>=1} (3 + A(x^k)) * x^k/k ).

Original entry on oeis.org

1, 4, 14, 50, 191, 763, 3180, 13640, 59937, 268304, 1219626, 5614038, 26117296, 122598622, 579977691, 2762264225, 13234003724, 63737225733, 308406648979, 1498558628584, 7309116199687, 35772044402485, 175621484712091, 864670723348447
Offset: 0

Views

Author

Seiichi Manyama, Jun 06 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (3+subst(A, x, x^k))*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = 1/(1-x)^3 * 1/Product_{k>=0} (1-x^(k+1))^a(k).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( 3 + Sum_{d|k} d * a(d-1) ) * a(n-k).

A038050 Number of labeled rooted trees with 3-colored leaves.

Original entry on oeis.org

3, 6, 45, 504, 7785, 153468, 3681909, 104126256, 3392064945, 125089571700, 5151335388309, 234322765501608, 11668410187187481, 631335472193760012, 36881146426978035765, 2313552152470193124192, 155107536736245864549345
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.83)

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[2*x-LambertW[-x*E^(2*x)], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 05 2013 *)

Formula

Divides by n and shifts left under exponential transform.
E.g.f.: 2*x - LambertW(-x*exp(2*x)). - Vladeta Jovovic, Mar 09 2003
a(n) = Sum_{k=0..n} (binomial(n, k)*2^k*(n-k)^(n-1)).
a(n) ~ sqrt(1+LambertW(2*exp(-1))) * (2*exp(-1)/LambertW(2*exp(-1)))^n * n^(n-1). - Vaclav Kotesovec, Oct 05 2013

A363508 G.f. satisfies A(x) = exp( Sum_{k>=1} (4 + A(x^k)) * x^k/k ).

Original entry on oeis.org

1, 5, 20, 80, 340, 1516, 7046, 33736, 165436, 826566, 4193348, 21542664, 111848161, 585949358, 3093526496, 16442687695, 87914559018, 472522551440, 2551591234444, 13836226412386, 75311992329508, 411336641019998, 2253641429297336
Offset: 0

Views

Author

Seiichi Manyama, Jun 06 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (4+subst(A, x, x^k))*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = 1/(1-x)^4 * 1/Product_{k>=0} (1-x^(k+1))^a(k).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( 4 + Sum_{d|k} d * a(d-1) ) * a(n-k).

A363547 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^2) ).

Original entry on oeis.org

1, 1, 4, 13, 47, 168, 635, 2420, 9460, 37445, 150309, 609568, 2495710, 10298332, 42793974, 178910161, 752034697, 3176346092, 13473881397, 57378127986, 245205968960, 1051257068207, 4520229295852, 19488595397346, 84231899582543, 364893870958302
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-x^k)^2))+x*O(x^n))); Vec(A);

Formula

A(x) = (1 - x)^2 * (B(x)/x - 2) where B(x) is the g.f. of A029857.

A036252 Number of trees with 3-colored leaves.

Original entry on oeis.org

1, 3, 6, 6, 16, 39, 114, 335, 1081, 3574, 12408, 44076, 160915, 598244, 2263400, 8681464, 33713947, 132305267, 524095596, 2093208435, 8422013745, 34110403728, 138979989162, 569339728312, 2343898451275, 9693334574919
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Formula

G.f.: A(x) = B(x)+B(x)^2/2+B(x^2)/2-B(x)*(B(x)-2*x), where B(x) = g.f. for A029857.
Showing 1-7 of 7 results.