A036249
Number of rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
Original entry on oeis.org
0, 1, 2, 5, 13, 37, 108, 332, 1042, 3360, 11019, 36722, 123875, 422449, 1453553, 5040816, 17599468, 61814275, 218252584, 774226549, 2758043727, 9862357697, 35387662266, 127374191687, 459783039109, 1664042970924, 6037070913558, 21951214425140, 79981665585029
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1717
- Håvard Berland, Brynjulf Owren and Bård Skaflestad, B-series and order conditions for exponential integrators, 2004. See p. 6.
- F. Chapoton, F. Hivert, and J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- F. Chapoton, F. Hivert, and J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, Journal of Algebra, 465 (2016), 322-355.
- Timothy Y. Chow and Mark G. Tiefenbruck, The Latin Tableau Conjecture, 2024. See p. 11.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 768
- Index entries for sequences related to rooted trees
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*
add(d*a(d), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+b(n-1)) end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 13 2018
-
max = 27; A[] = 1; Do[A[x] = x*Exp[Sum[(A[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[A[x] + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
-
{a(n)=local(A=x+x*O(x^n));for(i=1,n, A=x*exp(sum(m=1,n,(subst(A,x,x^m)+x^m)/m)));polcoeff(A,n,x)} \\ Paul D. Hanna, Oct 19 2005
A198518
G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x^n)/(1+x^n) * x^n/n ).
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 9, 16, 29, 54, 102, 194, 375, 730, 1434, 2837, 5650, 11311, 22767, 46023, 93422, 190322, 389037, 797613, 1639878, 3380099, 6983484, 14459570, 29999618, 62357426, 129843590, 270807835, 565674584, 1183301266, 2478624060, 5198504694, 10916110768, 22948299899
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 16*x^7 + 29*x^8 +...
where
log(A(x)) = A(x)/(1+x)*x + A(x^2)/(1+x^2)*x^2/2 + A(x^3)/(1+x^3)*x^3/3 +...
The coefficients in A(x)/(1+x) begin:
[1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 67, 127, 248, 482, 952, 1885, 3765, ...]
(this is, up to offset, A001678),
from which g.f. A(x) may be generated by the Euler transform:
A(x) = 1/((1-x)^1*(1-x^2)^0*(1-x^3)^1*(1-x^4)^1*(1-x^5)^2*(1-x^6)^3*(1-x^7)^6*(1-x^8)^10*(1-x^9)^19*(1-x^10)^35*...).
From _Joerg Arndt_, Jun 28 2014: (Start)
The a(6) = 9 rooted trees with 6 non-root nodes as described in the comment are:
: level sequence out-degrees (dots for zeros)
: 1: [ 0 1 2 3 3 3 2 ] [ 1 2 3 . . . . ]
: O--o--o--o
: .--o
: .--o
: .--o
:
: 2: [ 0 1 2 3 3 2 2 ] [ 1 3 2 . . . . ]
: O--o--o--o
: .--o
: .--o
: .--o
:
: 3: [ 0 1 2 3 3 2 1 ] [ 2 2 2 . . . . ]
: O--o--o--o
: .--o
: .--o
: .--o
:
: 4: [ 0 1 2 2 2 2 2 ] [ 1 5 . . . . . ]
: O--o--o
: .--o
: .--o
: .--o
: .--o
:
: 5: [ 0 1 2 2 2 2 1 ] [ 2 4 . . . . . ]
: O--o--o
: .--o
: .--o
: .--o
: .--o
:
: 6: [ 0 1 2 2 2 1 1 ] [ 3 3 . . . . . ]
: O--o--o
: .--o
: .--o
: .--o
: .--o
:
: 7: [ 0 1 2 2 1 2 2 ] [ 2 2 . . 2 . . ]
: O--o--o
: .--o
: .--o--o
: .--o
:
: 8: [ 0 1 2 2 1 1 1 ] [ 4 2 . . . . . ]
: O--o--o
: .--o
: .--o
: .--o
: .--o
:
: 9: [ 0 1 1 1 1 1 1 ] [ 6 . . . . . . ]
: O--o
: .--o
: .--o
: .--o
: .--o
: .--o
(End)
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(0) = 1 through a(6) = 9 rooted trees with n + 1 nodes where non-root vertices cannot have out-degree 1:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
((oo)) ((ooo)) ((oooo)) ((ooooo))
(o(oo)) (o(ooo)) (o(oooo))
(oo(oo)) (oo(ooo))
((o(oo))) (ooo(oo))
((o(ooo)))
((oo)(oo))
((oo(oo)))
(o(o(oo)))
(End)
Unlabeled rooted trees are
A000081.
Lone-child-avoiding rooted trees are
A001678(n+1).
Topologically series-reduced rooted trees are
A001679.
Labeled lone-child-avoiding rooted trees are
A060356.
-
with(numtheory):
b:= proc(n) b(n):= `if`(n=0, 1, a(n)-b(n-1)) end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*b(d-1), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, Jul 02 2014
-
b[n_] := b[n] = If[n==0, 1, a[n] - b[n-1]];
a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*b[d-1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
Table[Length[Select[urt[n],FreeQ[Z@@#,{}]&]],{n,10}] (* _Gus Wiseman, Jan 22 2020 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A/(1+x),x,x^m+x*O(x^n))*x^m/m)));polcoeff(A,n)}
A363545
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - 2*x^k)) ).
Original entry on oeis.org
1, 1, 4, 14, 54, 206, 823, 3312, 13619, 56643, 238569, 1014443, 4352038, 18809992, 81843021, 358186642, 1575810191, 6965004499, 30914431131, 137736012285, 615785575785, 2761693248028, 12421390811559, 56016050571825, 253228531426237
Offset: 0
-
seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-2*x^k)))+x*O(x^n))); Vec(A);
A363546
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - 3*x^k)) ).
Original entry on oeis.org
1, 1, 5, 22, 105, 497, 2431, 11976, 59928, 302816, 1545660, 7955132, 41255625, 215378364, 1131134574, 5972272636, 31684600709, 168824599282, 903080385252, 4848038120323, 26110774945462, 141048622038068, 764026532321068, 4149020129689451
Offset: 0
-
seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-3*x^k)))+x*O(x^n))); Vec(A);
A363580
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 + 2*x^k)) ).
Original entry on oeis.org
1, 1, 0, 2, 0, 2, 1, 6, -2, 11, -1, 30, -21, 76, -60, 223, -245, 653, -817, 2031, -2935, 6521, -10067, 21455, -35425, 72152, -123756, 246752, -436854, 855852, -1546777, 3001811, -5513604, 10630676, -19747742, 37949424, -71115077, 136415279, -257301742, 493313335
Offset: 0
-
seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1+2*x^k)))+x*O(x^n))); Vec(A);
A363581
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 + 3*x^k)) ).
Original entry on oeis.org
1, 1, -1, 4, -6, 11, -22, 62, -151, 353, -867, 2261, -5861, 15178, -39878, 106099, -283823, 763248, -2065453, 5621318, -15368682, 42190539, -116281176, 321647511, -892617214, 2484583934, -6935203356, 19408586888, -54447145335, 153084848495
Offset: 0
-
seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1+3*x^k)))+x*O(x^n))); Vec(A);
A363547
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^2) ).
Original entry on oeis.org
1, 1, 4, 13, 47, 168, 635, 2420, 9460, 37445, 150309, 609568, 2495710, 10298332, 42793974, 178910161, 752034697, 3176346092, 13473881397, 57378127986, 245205968960, 1051257068207, 4520229295852, 19488595397346, 84231899582543, 364893870958302
Offset: 0
-
seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-x^k)^2))+x*O(x^n))); Vec(A);
A363548
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^3) ).
Original entry on oeis.org
1, 1, 5, 19, 79, 326, 1414, 6198, 27794, 126233, 580885, 2700135, 12665756, 59869222, 284919675, 1364009722, 6564545500, 31742029545, 154134718727, 751316355122, 3674923035139, 18031965040197, 88734141475113, 437813286219942, 2165445447313147
Offset: 0
-
seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-x^k)^3))+x*O(x^n))); Vec(A);
A304914
Number of trees with positive integer edge labels summing to n.
Original entry on oeis.org
1, 1, 2, 4, 9, 21, 55, 146, 415, 1212, 3653, 11246, 35346, 112750, 364714, 1193202, 3943557, 13148575, 44186841, 149536376, 509270554, 1744342614, 6005869285, 20777091355, 72192026878, 251848377631, 881865312582, 3098564357293, 10922162622233, 38614641384893
Offset: 0
-
max = 30; g[] = 1; Do[g[x] = Exp[Sum[(g[x^k]/(1 - x^k))*(x^k/k) + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[g[x] + (g[x^2] - g[x]^2)*(x/(2*(1 - x))) + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
-
\\ here b(n) is A052855 as series
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
b(n)={my(v=[1]); for(i=2, n, v=concat([1], v + EulerT(v))); Ser(v)*(1-x)}
seq(n)={my(g=b(n)); Vec(g + (subst(g,x,x^2) - g^2)*x/(2*(1-x)))}
Original entry on oeis.org
1, 1, 2, 6, 15, 44, 128, 386, 1179, 3679, 11601, 37030, 119262, 387325, 1266647, 4168264, 13791565, 45856091, 153134306, 513403575, 1727395042, 5830866601, 19740613869, 67014421326, 228066659185, 777961702283, 2659398743509, 9109015516017, 31258117755635
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{C=Sequence(Z,1 <= card),S=PowerSet(B),B=Prod(C,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
Showing 1-10 of 10 results.
Comments