cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A036249 Number of rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)

Original entry on oeis.org

0, 1, 2, 5, 13, 37, 108, 332, 1042, 3360, 11019, 36722, 123875, 422449, 1453553, 5040816, 17599468, 61814275, 218252584, 774226549, 2758043727, 9862357697, 35387662266, 127374191687, 459783039109, 1664042970924, 6037070913558, 21951214425140, 79981665585029
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Essentially the same as A029856. Cf. A048802. Row sums of A303911.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*
          add(d*a(d), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+b(n-1)) end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 13 2018
  • Mathematica
    max = 27; A[] = 1; Do[A[x] = x*Exp[Sum[(A[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[A[x] + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
  • PARI
    {a(n)=local(A=x+x*O(x^n));for(i=1,n, A=x*exp(sum(m=1,n,(subst(A,x,x^m)+x^m)/m)));polcoeff(A,n,x)} \\ Paul D. Hanna, Oct 19 2005

Formula

G.f. satisfies: A(x) = x*exp( Sum_{n>=1} (A(x^n) + x^n)/n ). - Paul D. Hanna, Oct 19 2005
If b(n) is the Euler transform of a(n), A052855, then a(n+1) = a(n) + b(n). - Franklin T. Adams-Watters, Mar 09 2006
G.f.: (x/(1 - x)) * Product_{n>=1} 1/(1 - x^n)^a(n). - Ilya Gutkovskiy, Jun 28 2021

A198518 G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x^n)/(1+x^n) * x^n/n ).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 54, 102, 194, 375, 730, 1434, 2837, 5650, 11311, 22767, 46023, 93422, 190322, 389037, 797613, 1639878, 3380099, 6983484, 14459570, 29999618, 62357426, 129843590, 270807835, 565674584, 1183301266, 2478624060, 5198504694, 10916110768, 22948299899
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2011

Keywords

Comments

For n>=1, a(n) is the number of rooted trees (see A000081) with n non-root nodes where non-root nodes cannot have out-degree 1, see the note by David Callan and the example. Imposing the condition also for the root node gives A001678. - Joerg Arndt, Jun 28 2014
Compare definition to G(x) = exp( Sum_{n>=1} G(x^n)*x^n/n ), where G(x) is the g.f. of A000081, the number of rooted trees with n nodes.
Number of forests of lone-child-avoiding rooted trees with n unlabeled vertices. - Gus Wiseman, Feb 03 2020

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 16*x^7 + 29*x^8 +...
where
log(A(x)) = A(x)/(1+x)*x + A(x^2)/(1+x^2)*x^2/2 + A(x^3)/(1+x^3)*x^3/3 +...
The coefficients in A(x)/(1+x) begin:
[1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 67, 127, 248, 482, 952, 1885, 3765, ...]
(this is, up to offset, A001678),
from which g.f. A(x) may be generated by the Euler transform:
A(x) = 1/((1-x)^1*(1-x^2)^0*(1-x^3)^1*(1-x^4)^1*(1-x^5)^2*(1-x^6)^3*(1-x^7)^6*(1-x^8)^10*(1-x^9)^19*(1-x^10)^35*...).
From _Joerg Arndt_, Jun 28 2014: (Start)
The a(6) = 9 rooted trees with 6 non-root nodes as described in the comment are:
:           level sequence       out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 3 3 2 ]    [ 1 2 3 . . . . ]
:  O--o--o--o
:        .--o
:        .--o
:     .--o
:
:     2:  [ 0 1 2 3 3 2 2 ]    [ 1 3 2 . . . . ]
:  O--o--o--o
:        .--o
:     .--o
:     .--o
:
:     3:  [ 0 1 2 3 3 2 1 ]    [ 2 2 2 . . . . ]
:  O--o--o--o
:        .--o
:     .--o
:  .--o
:
:     4:  [ 0 1 2 2 2 2 2 ]    [ 1 5 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:     .--o
:     .--o
:
:     5:  [ 0 1 2 2 2 2 1 ]    [ 2 4 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:     .--o
:  .--o
:
:     6:  [ 0 1 2 2 2 1 1 ]    [ 3 3 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:  .--o
:  .--o
:
:     7:  [ 0 1 2 2 1 2 2 ]    [ 2 2 . . 2 . . ]
:  O--o--o
:     .--o
:  .--o--o
:     .--o
:
:     8:  [ 0 1 2 2 1 1 1 ]    [ 4 2 . . . . . ]
:  O--o--o
:     .--o
:  .--o
:  .--o
:  .--o
:
:     9:  [ 0 1 1 1 1 1 1 ]    [ 6 . . . . . . ]
:  O--o
:  .--o
:  .--o
:  .--o
:  .--o
:  .--o
(End)
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(0) = 1 through a(6) = 9 rooted trees with n + 1 nodes where non-root vertices cannot have out-degree 1:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)    (oooooo)
                ((oo))  ((ooo))  ((oooo))   ((ooooo))
                        (o(oo))  (o(ooo))   (o(oooo))
                                 (oo(oo))   (oo(ooo))
                                 ((o(oo)))  (ooo(oo))
                                            ((o(ooo)))
                                            ((oo)(oo))
                                            ((oo(oo)))
                                            (o(o(oo)))
(End)
		

Crossrefs

The labeled version is A254382.
Unlabeled rooted trees are A000081.
Lone-child-avoiding rooted trees are A001678(n+1).
Topologically series-reduced rooted trees are A001679.
Labeled lone-child-avoiding rooted trees are A060356.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) b(n):= `if`(n=0, 1, a(n)-b(n-1)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
           d*b(d-1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 02 2014
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, a[n] - b[n-1]];
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*b[d-1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],FreeQ[Z@@#,{}]&]],{n,10}] (* _Gus Wiseman, Jan 22 2020 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A/(1+x),x,x^m+x*O(x^n))*x^m/m)));polcoeff(A,n)}

Formula

Euler transform of coefficients in A(x)/(1+x), where g.f. A(x) = Sum_{n>=0} a(n)*x^n.
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711..., c = 1.3437262442171062526771597... . - Vaclav Kotesovec, Sep 03 2014
a(n) = A001678(n + 1) + A001678(n + 2). - Gus Wiseman, Jan 22 2020
Euler transform of A001678(n + 1). - Gus Wiseman, Feb 03 2020

A363545 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - 2*x^k)) ).

Original entry on oeis.org

1, 1, 4, 14, 54, 206, 823, 3312, 13619, 56643, 238569, 1014443, 4352038, 18809992, 81843021, 358186642, 1575810191, 6965004499, 30914431131, 137736012285, 615785575785, 2761693248028, 12421390811559, 56016050571825, 253228531426237
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-2*x^k)))+x*O(x^n))); Vec(A);

Formula

A(x) = (1 - 2*x) * B(x) where B(x) is the g.f. of A362389.
a(n) = A362389(n) - 2*A362389(n-1) for n > 0.

A363546 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - 3*x^k)) ).

Original entry on oeis.org

1, 1, 5, 22, 105, 497, 2431, 11976, 59928, 302816, 1545660, 7955132, 41255625, 215378364, 1131134574, 5972272636, 31684600709, 168824599282, 903080385252, 4848038120323, 26110774945462, 141048622038068, 764026532321068, 4149020129689451
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-3*x^k)))+x*O(x^n))); Vec(A);

Formula

A(x) = (1 - 3*x) * B(x) where B(x) is the g.f. of A363541.
a(n) = A363541(n) - 3*A363541(n-1) for n > 0.

A363580 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 + 2*x^k)) ).

Original entry on oeis.org

1, 1, 0, 2, 0, 2, 1, 6, -2, 11, -1, 30, -21, 76, -60, 223, -245, 653, -817, 2031, -2935, 6521, -10067, 21455, -35425, 72152, -123756, 246752, -436854, 855852, -1546777, 3001811, -5513604, 10630676, -19747742, 37949424, -71115077, 136415279, -257301742, 493313335
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1+2*x^k)))+x*O(x^n))); Vec(A);

Formula

A(x) = (1 + 2*x) * B(x) where B(x) is the g.f. of A363578.
a(n) = A363578(n) + 2*A363578(n-1) for n > 0.

A363581 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 + 3*x^k)) ).

Original entry on oeis.org

1, 1, -1, 4, -6, 11, -22, 62, -151, 353, -867, 2261, -5861, 15178, -39878, 106099, -283823, 763248, -2065453, 5621318, -15368682, 42190539, -116281176, 321647511, -892617214, 2484583934, -6935203356, 19408586888, -54447145335, 153084848495
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1+3*x^k)))+x*O(x^n))); Vec(A);

Formula

A(x) = (1 + 3*x) * B(x) where B(x) is the g.f. of A363579.
a(n) = A363579(n) + 3*A363579(n-1) for n > 0.

A363547 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^2) ).

Original entry on oeis.org

1, 1, 4, 13, 47, 168, 635, 2420, 9460, 37445, 150309, 609568, 2495710, 10298332, 42793974, 178910161, 752034697, 3176346092, 13473881397, 57378127986, 245205968960, 1051257068207, 4520229295852, 19488595397346, 84231899582543, 364893870958302
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-x^k)^2))+x*O(x^n))); Vec(A);

Formula

A(x) = (1 - x)^2 * (B(x)/x - 2) where B(x) is the g.f. of A029857.

A363548 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^3) ).

Original entry on oeis.org

1, 1, 5, 19, 79, 326, 1414, 6198, 27794, 126233, 580885, 2700135, 12665756, 59869222, 284919675, 1364009722, 6564545500, 31742029545, 154134718727, 751316355122, 3674923035139, 18031965040197, 88734141475113, 437813286219942, 2165445447313147
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-x^k)^3))+x*O(x^n))); Vec(A);

Formula

A(x) = (1 - x)^3 * B(x) where B(x) is the g.f. of A363507.
a(n) = Sum_{k=0..3} (-1)^k * binomial(3,k) * A363507(n-k).

A304914 Number of trees with positive integer edge labels summing to n.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 55, 146, 415, 1212, 3653, 11246, 35346, 112750, 364714, 1193202, 3943557, 13148575, 44186841, 149536376, 509270554, 1744342614, 6005869285, 20777091355, 72192026878, 251848377631, 881865312582, 3098564357293, 10922162622233, 38614641384893
Offset: 0

Views

Author

Andrew Howroyd, May 20 2018

Keywords

Crossrefs

Row sums of A303842.
Cf. A052855.

Programs

  • Mathematica
    max = 30; g[] = 1; Do[g[x] = Exp[Sum[(g[x^k]/(1 - x^k))*(x^k/k) + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[g[x] + (g[x^2] - g[x]^2)*(x/(2*(1 - x))) + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
  • PARI
    \\ here b(n) is A052855 as series
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], v + EulerT(v))); Ser(v)*(1-x)}
    seq(n)={my(g=b(n)); Vec(g + (subst(g,x,x^2) - g^2)*x/(2*(1-x)))}

Formula

G.f.: g(x) + (g(x^2) - g(x)^2)*x/(2*(1-x)) where g(x) is the g.f. of A052855.

A052870 First differences of A052829.

Original entry on oeis.org

1, 1, 2, 6, 15, 44, 128, 386, 1179, 3679, 11601, 37030, 119262, 387325, 1266647, 4168264, 13791565, 45856091, 153134306, 513403575, 1727395042, 5830866601, 19740613869, 67014421326, 228066659185, 777961702283, 2659398743509, 9109015516017, 31258117755635
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{C=Sequence(Z,1 <= card),S=PowerSet(B),B=Prod(C,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

From Seiichi Manyama, Jun 07 2023: (Start)
Conjectures: G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) * x^k/(k * (1 - x^k)) ).
A(x) = Sum_{k>=0} a(k) * x^k = Product_{j>=1} Product_{k>=0} (1+x^(j+k))^a(k). (End)

Extensions

More terms from Alois P. Heinz, Mar 16 2016
Showing 1-10 of 10 results.