cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A238258 Decimal expansion of a constant related to A002465.

Original entry on oeis.org

3, 0, 8, 8, 2, 7, 7, 3, 0, 4, 7, 4, 1, 7, 4, 0, 1, 7, 9, 1, 1, 5, 8, 4, 0, 0, 8, 2, 0, 2, 5, 4, 3, 8, 2, 7, 6, 8, 3, 6, 4, 4, 4, 8, 9, 7, 1, 4, 2, 0, 1, 3, 8, 7, 6, 7, 2, 4, 7, 7, 3, 0, 1, 2, 1, 7, 6, 5, 1, 6, 8, 1, 2, 7, 8, 8, 2, 6, 6, 6, 6, 9, 5, 2, 0, 3, 2, 7, 1, 1, 3, 0, 9, 6, 1, 9, 4, 6, 0, 0, 9, 7, 3, 0, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			3.08827730474174017911584...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[-2/LambertW[-2/E^2]/(2+LambertW[-2/E^2]), 105]][[1]]

Formula

Equals lim n->infinity (A002465(n)/(n-1)!)^(1/n).
Equals -2 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))).
Equals -2 / (A226775 * (2 + A226775)).

A238260 Decimal expansion of a multiplicative constant related to A002465.

Original entry on oeis.org

6, 3, 1, 2, 6, 6, 8, 7, 8, 8, 7, 4, 1, 1, 5, 4, 6, 7, 9, 7, 0, 0, 4, 8, 2, 3, 2, 5, 7, 9, 7, 0, 6, 8, 7, 9, 5, 5, 6, 1, 5, 4, 6, 9, 0, 5, 1, 4, 4, 6, 1, 1, 4, 0, 8, 9, 2, 0, 0, 6, 9, 7, 3, 4, 0, 5, 0, 8, 5, 4, 1, 5, 0, 3, 7, 6, 6, 1, 7, 0, 8, 5, 6, 0, 4, 0, 0, 8, 5, 0, 1, 7, 6, 1, 1, 0, 9, 3, 3, 5, 4, 6, 3, 5, 5
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			0.63126687887411546797...
		

Crossrefs

Formula

Equals lim n->infinity A002465(n) / ((n-1)! * A238258^n).

A007820 Stirling numbers of second kind S(2n,n).

Original entry on oeis.org

1, 1, 7, 90, 1701, 42525, 1323652, 49329280, 2141764053, 106175395755, 5917584964655, 366282500870286, 24930204590758260, 1850568574253550060, 148782988064375309400, 12879868072770626040000, 1194461517469807833782085, 118144018577011378596484455
Offset: 0

Views

Author

kemp(AT)sads.informatik.uni-frankfurt.de (Rainer Kemp)

Keywords

Comments

Chan and Manna prove that a(n) is odd if and only if n is in A003714. - Jason Kimberley, Sep 14 2009
The number of ways to partition a set of 2*n elements into n disjoint subsets. - Vladimir Reshetnikov, Oct 10 2016
Conjecture: a(2*n+1) is divisible by (2*n + 1)^2. - Peter Bala, Mar 30 2025

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 +...,
where A(x) = 1 + 1^2*x*exp(-1*x) + 2^4*exp(-2^2*x)*x^2/2! + 3^6*exp(-3^2*x)*x^3/3! + 4^8*exp(-4^2*x)*x^4/4! + 5^10*exp(-5^2*x)*x^5/5! + ... - _Paul D. Hanna_, Oct 17 2012
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.

Crossrefs

Programs

  • Maple
    A007820 := proc(n) Stirling2(2*n,n) ; end proc:
    seq(A007820(n),n=0..20) ; # R. J. Mathar, Mar 15 2011
  • Mathematica
    Table[StirlingS2[2n, n], {n, 1, 12}] (* Emanuele Munarini, Mar 12 2011 *)
  • Maxima
    makelist(stirling2(2*n,n),n,0,12); /* Emanuele Munarini, Mar 12 2011 */
    
  • PARI
    a(n)=stirling(2*n,n,2); /* Joerg Arndt, Jul 01 2011 */
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), n)} \\ Paul D. Hanna, Oct 17 2012
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,(m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!),n)} \\ Paul D. Hanna, Oct 17 2012
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A007820(n): return stirling(n<<1,n) # Chai Wah Wu, Jun 09 2025
  • Sage
    [stirling_number2(2*i,i) for i in range(1,20)] # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = A048993(2n,n). - R. J. Mathar, Mar 15 2011
Asymptotic: a(n) ~ (4*n/(e*z*(2-z)))^n/sqrt(2*Pi*n*(z-1)), where z = A256500 = 1.59362426... is a root of the equation exp(z)*(2-z)=2. - Vaclav Kotesovec, May 30 2011
a(n) = 1/n! * Sum_{k = 0..n} binomial(n,k)*(-1)^k*(n-k)^(2*n). - Emanuele Munarini, Jul 01 2011
a(n) = [x^n] 1 / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Oct 17 2012
O.g.f.: Sum_{n>=1} (n^2)^n * exp(-n^2*x) * x^n/n! = Sum_{n>=1} S2(2*n,n)*x^n. - Paul D. Hanna, Oct 17 2012
G.f.: Sum_{n > 0} (a(n)*n!/(2*n)!)*x^n = x*B'(x)/B(x)-1, where B(x) satisfies B(x)^2 = x*(exp(B(x))-1). - Vladimir Kruchinin, Mar 13 2013
a(n) = Sum_{j = 0..n} (-1)^(n-j)*n^j*binomial(2*n,j)*stirling2(2*n-j,n). - Vladimir Kruchinin, Jun 14 2013

Extensions

Typo in Mathematica program fixed by Vincenzo Librandi, May 04 2013
a(0)=1 prepended by Alois P. Heinz, Feb 01 2018

A187235 Number of ways to place n nonattacking semi-bishops on an n X n board.

Original entry on oeis.org

1, 5, 51, 769, 15345, 381065, 11323991, 391861841, 15476988033, 687029386845, 33861652925595, 1834814222811361, 108411291759763681, 6936921762461326545, 477881176664541171375, 35264213540563039871265, 2775185864375851234241985, 232010235620834821000259765, 20534530616200868936398461635
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 08 2011

Keywords

Comments

Two semi-bishops do not attack each other if they are in the same NorthWest-SouthEast diagonal.
Conjecture: Number of parity preserving permutations of the set {1, 2, ..., 2n+1} with exactly n+1 cycles (see A246117). - Peter Luschny, Feb 09 2015

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,1,Coefficient[Expand[Product[x+i,{i,1,n}]*Product[x+i,{i,1,n-1}],x],x,n-1]],{n,1,50}]
    Table[(-1)^n*Sum[StirlingS1[n+1,j]*StirlingS1[n,n-j+1],{j,1,n}],{n,1,50}] (* Explicit formula, Vaclav Kotesovec, Mar 24 2011 *)
  • PARI
    a(n) = {(-1)^n*sum(i=0, n, stirling(n,i,1) * stirling(n+1,n-i+1,1))} \\ Andrew Howroyd, May 09 2020

Formula

a(n)/(n-1)! ~ 0.24252191 * 4.9108149^n where the second constant is 1/(z*(1-z)) = 4.910814964..., where z=0.715331862959... is a root of the equation z=2*(z-1)*log(1-z).
For constants see A238261 and A238262. - Vaclav Kotesovec, Feb 21 2014
a(n) = (-1)^n * Sum_{i=0..n} Stirling1(n,i) * Stirling1(n+1,n-i+1). - Ryan Brooks, May 09 2020

A137774 Number of ways to place n nonattacking empresses on an n X n board.

Original entry on oeis.org

1, 2, 2, 8, 20, 94, 438, 2766, 19480, 163058, 1546726, 16598282, 197708058, 2586423174, 36769177348, 563504645310, 9248221393974, 161670971937362, 2996936692836754, 58689061747521430, 1210222434323163704, 26204614054454840842, 594313769819021397534, 14086979362268860896282
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 27 2011

Keywords

Comments

An empress moves like a rook and a knight.

Crossrefs

Formula

Asymptotics (Vaclav Kotesovec, Jan 26 2011): a(n)/n! -> 1/e^4.
General asymptotic formulas for number of ways to place n nonattacking pieces rook + leaper[r,s] on an n X n board:
a(n)/n! -> 1/e^2 for 0
a(n)/n! -> 1/e^4 for 0

Extensions

Terms a(16)-a(17) from Vaclav Kotesovec, Feb 06 2011
Terms a(18)-a(19) from Wolfram Schubert, Jul 24 2011
Terms a(20)-a(24) (computed by Wolfram Schubert), Vaclav Kotesovec, Aug 25 2012

A274105 Triangle read by rows: T(n,k) = number of configurations of k nonattacking bishops on the black squares of an n X n chessboard (0 <= k <= n - [n>1]).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 5, 4, 1, 8, 14, 4, 1, 13, 46, 46, 8, 1, 18, 98, 184, 100, 8, 1, 25, 206, 674, 836, 308, 16, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 41, 612, 4196, 13756, 20476, 11896, 1912, 32, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 61, 1440, 16940, 106772, 361780, 629336, 506600, 154256, 11600, 64
Offset: 0

Author

N. J. A. Sloane, Jun 14 2016

Keywords

Comments

Rows give the coefficients of the independence polynomial of the n X n black bishop graph. - Eric W. Weisstein, Jun 26 2017

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2;
  1,  5,   4;
  1,  8,  14,      4;
  1, 13,  46,     46,      8;
  1, 18,  98,    184,    100,      8;
  1, 25,  206,   674,    836,    308,     16;
  1, 32,  356,  1704,   3532,   2816,    632,     16;
  1, 41,  612,  4196,  13756,  20476,  11896,   1912,     32;
  1, 50,  940,  8480,  38932,  89256,  93800,  37600,   3856,    32;
  1, 61, 1440, 16940, 106772, 361780, 629336, 506600, 154256, 11600, 64;
  ...
Corresponding independence polynomials:
  1, (empty graph)
  1+x, (K_1)
  1+2*x, (P_2 = K_2)
  1+5*x+4*x^2, (butterfly graph)
  1+8*x+14*x^2+4*x^3,
  ...
		

Crossrefs

Alternate rows give A088960.
Row sums are A216332(n+1).
Cf. A274106 (white squares), A288183, A201862, A002465.

Programs

  • Maple
    with(combinat); with(gfun);
    T:=n->add(stirling2(n+1,n+1-k)*x^k, k=0..n);
    # bishops on black squares
    bish:=proc(n) local m,k,i,j,t1,t2; global T;
    if n<2 then return [1$(n+1)] fi;
    if (n mod 2) = 0 then m:=n/2;
    t1:=add(binomial(m,k)*T(2*m-1-k)*x^k, k=0..m);
    else
    m:=(n-1)/2;
    t1:=add(binomial(m+1,k)*T(2*m-k)*x^k, k=0..m+1);
    fi;
    seriestolist(series(t1,x,2*n+1));
    end;
    for n from 0 to 12 do lprint(bish(n)); od:
    # second Maple program:
    T:= (n,k)-> add(binomial(ceil(n/2),j)*Stirling2(n-j,n-k),j=0..k):
    seq(seq(T(n,k), k=0..n-`if`(n>1,1,0)), n=0..11);  # Alois P. Heinz, Dec 01 2024
  • Mathematica
    CoefficientList[Table[Sum[x^n Binomial[Ceiling[n/2], k] BellB[n - k, 1/x], {k, 0, Ceiling[n/2]}], {n, 10}], x] (* Eric W. Weisstein, Jun 26 2017 *)
  • SageMath
    def stirling2_negativek(n, k):
      if k < 0: return 0
      else: return stirling_number2(n, k)
    print([sum([binomial(ceil(n/2), l)*stirling2_negativek(n-l, n-k) for l in [0..k]]) for n in [0..10] for k in [0..n-1+kronecker_delta(n,1)+kronecker_delta(n,0)]]) # Eder G. Santos, Dec 01 2024

Formula

From Eder G. Santos, Dec 01 2024: (Start)
T(n,k) = Sum_{j=0..k} binomial(ceiling(n/2),j) * Stirling2(n-j,n-k).
T(n,k) = T(n-1,k) + (n-k+A000035(n)) * T(n-1,k-1), T(n,0) = 1, T(0,k) = delta(k,0). (End)

Extensions

T(0,0) prepended by Eder G. Santos, Dec 01 2024

A201861 Number of ways to place n nonattacking ferses on an n X n board.

Original entry on oeis.org

1, 4, 38, 661, 16286, 527654, 21191208, 1015335608, 56484795166, 3576188894116, 253756155257774, 19937566770720487, 1717714713900798962, 160977153444563000938, 16300053518916522372836, 1773133639291617644092637, 206197950879511078156507433
Offset: 1

Author

Vaclav Kotesovec, Dec 06 2011

Keywords

Comments

Fers is a leaper [1,1].

Crossrefs

Formula

Asymptotic (Kotesovec, 2011): a(n) ~ n^(2n)/n!*exp(-5/2).

Extensions

a(15) from Vaclav Kotesovec, Jan 03 2012
a(16) from Vaclav Kotesovec, Aug 31 2016
a(17) from Vaclav Kotesovec, May 30 2021

A201862 Number of ways to place k nonattacking bishops on an n X n board, sum over all k>=0.

Original entry on oeis.org

1, 2, 9, 70, 729, 9918, 167281, 3423362, 82609921, 2319730026, 74500064809, 2711723081550, 110568316431609, 5016846683306758, 251180326892449969, 13806795579059621930, 827911558468860287041, 53940895144894708523922, 3799498445458163685753481, 288400498147873552894868886
Offset: 0

Author

Vaclav Kotesovec, Dec 06 2011

Keywords

Comments

Also the number of vertex covers and independent vertex sets of the n X n bishop graph.

Programs

  • Mathematica
    knbishops[k_,n_]:=(If[n==1,If[k==1,1,0],(-1)^k/(2n-k)!
    *Sum[Binomial[2n-k,n-k+i]*Sum[(-1)^m*Binomial[n-i,m]*m^Floor[n/2]*(m+1)^Floor[(n+1)/2],{m,1,n-i}]
    *Sum[(-1)^m*Binomial[n-k+i,m]*m^Floor[(n+1)/2]*(m+1)^Floor[n/2],{m,1,n+i-k}],{i,Max[0,k-n],Min[k,n]}]]);
    Table[1+Sum[knbishops[k,n],{k,1,2n-1}],{n,1,25}]

Formula

a(n) = A216078(n+1) * A216332(n+1). - Andrew Howroyd, May 08 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 01 2024

A187239 Number of ways to place 7 nonattacking bishops on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 440, 38368, 1022320, 14082528, 126490352, 837543200, 4412818240, 19447224864, 74255991784, 251997948736, 774861621936, 2191005028672, 5764306674400, 14243327787456, 33309659739904, 74194554880960, 158241369977880, 324605935279648, 642894402918768
Offset: 1

Author

Vaclav Kotesovec, Mar 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 8 x^4 (630 x^18 + 10620 x^17 + 153525 x^16 + 1211058 x^15 + 6621390 x^14 + 24647178 x^13 + 66958554 x^12 + 133891418 x^11 + 202680754 x^10 + 232634698 x^9 + 204008900 x^8 + 135332502 x^7 + 67245306 x^6 + 24326718 x^5 + 6174582 x^4 + 1024222 x^3 + 99344 x^2 + 4466 x + 55) / ((x - 1)^15 (x + 1)^9), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = n^14/5040 - n^13/180 + 313n^12/4320 - 383n^11/648 + 14797n^10/4320 - 38233n^9/2520 + 3217n^8/60 - 145469n^7/945 + 1546679n^6/4320 - 4297801n^5/6480 + 257903n^4/270 - 3915679n^3/3780 + 1787007n^2/2240 - 318023n/840 + 9503/128 + (-n^8/192 + n^7/8 - 389n^6/288 + 689n^5/80 - 319n^4/9 + 1153n^3/12 - 95965n^2/576 + 20129n/120 - 9503/128)*(-1)^n.
G.f.: -8x^5*(630x^18 + 10620x^17 + 153525x^16 + 1211058x^15 + 6621390x^14 + 24647178x^13 + 66958554x^12 + 133891418x^11 + 202680754x^10 + 232634698x^9 + 204008900x^8 + 135332502x^7 + 67245306x^6 + 24326718x^5 + 6174582x^4 + 1024222x^3 + 99344x^2 + 4466x + 55)/((x-1)^15*(x+1)^9).
a(7) = A002465(7).

A191236 Number of ways to place n nonattacking bishops on black squares of a 2n X 2n board.

Original entry on oeis.org

1, 2, 14, 184, 3532, 89256, 2800016, 104967808, 4578528464, 227816059360, 12735645181536, 790296855912576, 53905019035510528, 4008716449677965312, 322807879692969879552, 27983800239966141382656
Offset: 0

Author

Vaclav Kotesovec, May 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[(1/n!)*Sum[(-1)^(n - k)*Binomial[n, k]*(k*(k + 1))^n, {k, 0, n}], {n,1,50}]] (* G. C. Greubel, Feb 03 2017 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*(m+1)^m*x^m*exp(-m*(m+1)*x+x*O(x^n))/m!),n)} \\ Paul D. Hanna, Oct 15 2012
    
  • PARI
    {a(n)=sum(k=0,n, binomial(n,k) * stirling(2*n-k,n,2))} \\ Paul D. Hanna, Nov 13 2012

Formula

a(n) = 1/n! * Sum_{j=0..n} (-1)^(n-j) * binomial(n,j) * (j*(j+1))^n.
Asymptotic: a(n) ~ 1/sqrt(Pi*(z-1)*(2-z)*n)*(2*n*exp(z-1)/z)^n or a(n) ~ exp(z/2)*Stirling2(2*n,n) where z = A256500 = 1.59362426... is a root of the equation exp(z)*(2-z)=2.
O.g.f.: Sum_{n>=0} n^n*(n+1)^n * exp(-n*(n+1)*x) * x^n/n! = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Oct 15 2012
a(n) = Sum_{k=0..n} binomial(n,k) * Stirling2(2*n-k,n), where Stirling2(n,k) = A008277(n,k). - Paul D. Hanna, Nov 13 2012

Extensions

Offset changed to 0 and a(0)=1 added by Paul D. Hanna, Nov 13 2012
Showing 1-10 of 23 results. Next